Greatest Common Factor of 13 and 6679

GCF(13, 6679) = 1, Greatest common factor of 13 and 6679 is 1. Greatest Common Factor or Greatest Common Divisor of two numbers is the largest integer by which both the numbers can be divided. There are two different methods to calculate Greatest Common Factor of 13 and 6679. Greatest Common Factor by prime factorization method and Greatest Common Factor by matching factors method.

Greatest Common Factor of 13 and 6679 by prime factorization method

We will first find the prime factorization of 13 and 6679.
Prime Factorization of 13 is 1, 13 and Prime Factorization of 6679 is 1, 6679.

  • Factorize\( (13) = \) \(1\times 13\)
  • Factorize\( (6679) = \) \(1\times 6679\)
Now we need to find any which are common for each number (1, 1) and multiply these numbers together.
\(GCF(13, 6679) = 1\times 1 = 1\).

Greatest Common Factor of 13 and 6679 by matching factors method

List of positive integers factors of 13 leaving a remainder zero is 1, 13
List of positive integers factors of 6679 leaving a remainder zero is 1, 6679
As you can see, 1 is the greatest and common number that 13 and 6679 divides into.
So the greatest common factor 13 and 6679 is 1.
\(GCF(13, 6679) = 1\).

If you want to learn more about greatest common divisor, take a look at the Wikipedia page.
Greatest common factor of:
 ,