Greatest Common Factor of 252 and 3768
GCF(252, 3768) = 12, Greatest common factor of 252 and 3768 is 12. Greatest Common Factor or Greatest Common Divisor of two numbers is the largest integer by which both the numbers can be divided. There are two different methods to calculate Greatest Common Factor of 252 and 3768. Greatest Common Factor by prime factorization method and Greatest Common Factor by matching factors method.
Greatest Common Factor of 252 and 3768 by prime factorization method
We will first find the prime factorization of 252 and 3768.
Prime Factorization of 252 is 1, 2, 2, 3, 3, 7 and Prime Factorization of 3768 is 1, 2, 2, 2, 3, 157.
- Factorize\( (252) = \) \(1\times 2\times 2\times 3\times 3\times 7\)
- Factorize\( (3768) = \) \(1\times 2\times 2\times 2\times 3\times 157\)
Now we need to find any which are common for each number (1, 2, 2, 3) and multiply these numbers together.
\(GCF(252, 3768) = 1\times 2\times 2\times 3 = 12\).
Greatest Common Factor of 252 and 3768 by matching factors method
List of positive integers factors of 252 leaving a remainder zero is 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252
List of positive integers factors of 3768 leaving a remainder zero is 1, 2, 3, 4, 6, 8, 12, 24, 157, 314, 471, 628, 942, 1256, 1884, 3768
As you can see, 12 is the greatest and common number that 252 and 3768 divides into.
So the greatest common factor 252 and 3768 is 12.
\(GCF(252, 3768) = 12\).
If you want to learn more about greatest common divisor, take a look at the Wikipedia page.