1) Simplify: \(\frac{2}{3i}\)
\(\color{red}{\frac{2}{3i} \ = \ \frac{2}{3i} \times \frac{i}{i} \ = \ \frac{2i}{-3}}\)
2) Simplify: \(\frac{4}{i \ + \ 1}\)
\(\color{red}{\frac{4}{i \ + \ 1} \ = \ \frac{4}{i \ + \ 1} \times \frac{i \ - \ 1}{i \ - \ 1} \ = \ \frac{4i \ - \ 4}{-1 \ - \ 1} \ = \ \frac{4i \ - \ 4}{-2} \ = \ 2 \ - \ 2i}\)
3) Simplify: \(\frac{6}{i \ - \ 1}\)
\(\color{red}{\frac{6}{i \ - \ 1} \ = \ \frac{6}{i \ - \ 1} \times \frac{i \ + \ 1}{i \ + \ 1} \ = \ \frac{6i \ + \ 6}{-1 \ - \ 1} \ = \ \frac{6i \ + \ 6}{-2} \ = \ -3 \ - \ 3i}\)
4) Simplify: \(\frac{6}{i}\)
\(\color{red}{\frac{6}{i} \ = \ \frac{6}{i} \times \frac{i}{i} \ = \ \frac{6i}{-1} \ = \ -6i}\)
5) Simplify: \(\frac{2}{3i \ + \ 1}\)
\(\color{red}{\frac{2}{3i \ + \ 1} \ = \ \frac{2}{3i \ + \ 1} \times \frac{3i \ - \ 1}{3i \ - \ 1} \ = \ \frac{6i \ - \ 2}{-9 \ - \ 1} \ = \ -\frac{6i}{10} \ + \ \frac{2}{10} \ = \ -\frac{3i}{5} \ + \ \frac{1}{5}}\)
6) Simplify: \(\frac{1}{4i \ + \ 2}\)
\(\color{red}{\frac{1}{4i \ + \ 2} \ = \ \frac{1}{4i \ + \ 2} \times \frac{4i \ - \ 2}{4i \ - \ 2} \ = \ \frac{4i \ - \ 2}{-16 \ - \ 4} \ = \ \frac{4i \ - \ 2}{-20} \ = \ -\frac{4i}{20} \ + \ \frac{2}{20} \ = \ -\frac{i}{5} \ + \ \frac{1}{10}}\)
7) Simplify: \(\frac{-3i}{-2 \ - \ 3i}\)
\(\color{red}{\frac{-3i}{-2 \ - \ 3i} \ = \ \frac{-3i}{-2 \ - \ 3i} \times \frac{-2 \ + \ 3i}{-2 \ + \ 3i} \ = \ \frac{6i \ + \ 9}{4 \ + \ 9} \ = \ \frac{6i \ + \ 9}{13} \ = \ \frac{6i}{13} \ + \ \frac{9}{13}}\)
8) Simplify: \(\frac{2i \ + \ 5}{i \ - \ 6}\)
\(\color{red}{\frac{2i \ + \ 5}{i \ - \ 6} \ = \ \frac{2i \ + \ 5}{i \ - \ 6} \times \frac{i \ + \ 6}{i \ + \ 6} \ = \ \frac{-2 \ + \ 12i \ + \ 5i \ + \ 30}{-1 \ - \ 36} \ = \ \frac{28 \ + \ 17i}{-37} \ = \ -\frac{28}{37} \ - \ \frac{17i}{37}}\)
9) Simplify: \(\frac{3 \ - \ i}{-2 \ + \ 4i}\)
\(\color{red}{\frac{3 \ - \ i}{-2 \ + \ 4i} \ = \ \frac{3 \ - \ i}{-2 \ + \ 4i} \times \frac{-2 \ - \ 4i}{-2 \ - \ 4i} \ = \ \frac{-6 \ - \ 12i \ + \ 2i \ - \ 4}{4 \ - \ (-16)} \ = \ \frac{-10 \ - \ 10i}{20} \ = \ -\frac{10}{20} \ - \ \frac{10i}{20} \ = \ -\frac{1}{2} \ - \ \frac{i}{2}}\)
10) Simplify: \(\frac{8 \ - \ 3i}{-i}\)
\(\color{red}{\frac{8 \ - \ 3i}{-i} \ = \ \frac{8 \ - \ 3i}{-i} \times \frac{i}{i} \ = \ \frac{8i \ + \ 3}{-(-1)} \ = \ 8i \ + \ 3}\)