How to Add and Subtract Matrices

How to Add and Subtract Matrices

 Read,3 minutes

Matrices operations

The basic operations on a matrix are addition, subtraction, and multiplication. For matrices to be added or subtracted, they must be in the same order. For matrices to be multiplied, the number of columns in the first Matrix must equal the number of rows in the second Matrix.

Adding Matrices

If A[aij]m×n and B[bij]m×n are two matrices with the same order, then A + B is a matrix, and each matrix element is the sum of the corresponding parts. i.e., A + B = [aij + bij]m×n
Consider A and B with a 2×2 order. Then the total can be found by:

[a1a2 a3a4]+[b1b2 b3b4]=[a1 + b1a2 + b2 a3 + b3a4 + b4]

Properties for Matrix Addition

If A, B, and C are all in the same order, then,

  • The Commutative Law says: A + B = B + A
  • The Associative Law:: (A + B) + C = A + (B + C)
  • Identity of the Matrix: A + 0 = 0 + A = 0 (0 is zero matrix which is additive identity of the matrix)
  • Additive Inverse: A + (A) = (A) + A = 0, where (A) is the result of changing the sign of each element of A which is the additive inverse of the Matrix.
  • A + B = A + C B + A = C + A  B = C
  • tr(A ± B = tr(A) ± tr(B)
  • If A + B = 0 = B + A, then B is the additive inverse of A, and A is the additive inverse of B.

Subtracting Matrices

We can say that if A and B are both matrices with the same order: A  B = A + (B)

Consider the two 2×2 matrices, A and B. The difference can then be found by:

[a1a2 a3a4][b1b2 b3b4]=[a1  b1a2  b2 a3  b3a4  b4]

We can subtract the matrices by subtracting each element of one Matrix from the corresponding element of the other Matrix. I.e., A  B = [aij  bij]m×n

Free printable Worksheets

Exercises for Adding and Subtracting Matrices

1) Find the answer: [25 73]+[42 49]

2) Find the answer: [32 126]+[513 78]

3) Find the answer: [1521 813]+[714 94]

4) Find the answer: [2431 2925]+[1726 149]

5) Find the answer: [911 145 1521]+[187 1418 293]

6) Find the answer: [25 73][42 49]

7) Find the answer: [1728 1532][125 911]

8) Find the answer: [97 1819][39 64]

9) Find the answer: [1119 2734][427 539]

10) Find the answer: [1814 5334 1315][9147 1920 3016]

 

1) Find the answer: [25 73]+[42 49]

[25 73]+[42 49] = [2 + (4)5 + (2) 7 + 43 + (9)] = [27 116]

2) Find the answer: [32 126]+[513 78]

[32 126]+[513 78] = [3 + 52 + 13 12 + (7)6 + 8] = [215 52]

3) Find the answer: [1521 813]+[714 94]

[1521 813]+[714 94] = [15 + (7)21 + 14 8 + (9)13 + 4] = [127 1717]

4) Find the answer: [2431 2925]+[1726 149]

[2431 2925]+[1726 149] = [24 + (17)31 + (26) 29 + 1425 + 9] = [75 1534]

5) Find the answer: [911 145 1521]+[187 1418 293]

[911 145 1521]+[187 1418 293] = [9 + (18)11 + (7) 14 + 145 + (18) 15 + (29)21 + 3] = [94 013 1424]

6) Find the answer: [25 73][42 49]

[25 73]+[42 49] = [2  (4)5  (2) 7  43  (9)] = [63 312]

7) Find the answer: [1728 1532][125 911]

[1728 1532][125 911] = [17  1228  (5) 15  932  (11)] = [523 2443]

8) Find the answer: [97 1819][39 64]

[97 1819][39 64] = [9  (3)7  9 18  619  4] = [1216 1223]

9) Find the answer: [1119 2734][427 539]

[1119 2734][427 539] = [11  (42)19  (7) 27  534  39] = [5326 225]

10) Find the answer: [1814 5334 1315][9147 1920 3016]

[1814 5334 1315][9147 1920 3016] = [18  9114  (47) 53  1934  (20) 13  3015  (16)] = [7333 3414 431]

Adding and Subtracting Matrices Practice Quiz