How to Find Determinants of a Matrix

How to Find Determinants of a Matrix

 Read,2 minutes

What is the Determinant of a Matrix?

The determinant of a matrix is a unique number that is only defined for square matrices (matrices with the same number of rows and columns). A determinant is used in calculus and other algebra-related matrices. It is a real number representing the matrix and can be used to solve a system of linear equations and find the inverse of a matrix.

How to find the Determinant of a Matrix?

The following steps can be used to find the value of a matrix's determinant:

  • Get the cofactor for each element in the first row or column.
  • Multiply each element by the determinant of the corresponding cofactor.
  • Add the results with the signs swapped.

As a starting point, the value of a matrix's determinant of a \(1 \times 1\) matrix is the single value itself.
The cofactor of an element is a matrix that can be made by taking that element's row and column out of that Matrix.

Determinant of 2 × 2 Matrix:

\( \left[
\begin{matrix}
a & b\\
c & d\\
\end{matrix}
\right] \) \(|A|=a\ d\ -\ b\ c\)

Determinant of 3 × 3 Matrix:

\( \left[
\begin{matrix}
a & b &c \\
d & e & f \\
g & h & i \\
\end{matrix}
\right] \)  \(|A|=ad-bc= a\ (e\ i \ –\  f\ h) \ –\  b\ (d\ i\  -\  f\ g) \ +\  c\ (d\ h \ –\  e\ g)\)

Properties of Determinants of a Matrix

●    A determinant can only be used with a square matrix (\(1 \times 1\), \(2 \times 2\), \(3 \times 3\), \(4 \times 4\),...).
●    A determinant can be a real or complex number.
●    \(|A|\) doesn't show the modulus of \(A\) in this case; it shows the determinant of matrix \(A\).
●    If the \(2 \times 2\) matrix's elements are all the same, the determinant will be \(0\).
●    If every number in a row or column of a \(2 \times 2\) matrix is \(0\), then the determinant is also \(0\).
●    The determinant of the product of two matrices is the same as the product of their determinants. \(|AB| \ = \ |A| \ |B|\).

Free printable Worksheets

Exercises for Finding Determinants of a Matrix

1) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 4 & -8 \\\ -2 & 3 \end{bmatrix}\)

2) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 7 & 3 \\\ 1 & 6 \end{bmatrix}\)

3) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 5 & 4 \\\ 2 & -9 \end{bmatrix}\)

4) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 0 & -9 \\\ -4 & 1 \end{bmatrix}\)

5) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 5 & 7 \\\ 3 & 2 \end{bmatrix}\)

6) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 9 & 8 \\\ 11 & 7 \end{bmatrix}\)

7) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 12 & 6 \\\ -4 & 7 \end{bmatrix}\)

8) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 6 & 11 \\\ 9 & 13 \end{bmatrix}\)

9) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} -5 & 17 \\\ 3 & -4 \end{bmatrix}\)

10) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 4 & -1 & 8 \\\ 1 & 5 & -2 \\\ -3 & 4 & 6 \end{bmatrix}\)

 

1) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 4 & -8 \\\ -2 & 3 \end{bmatrix}\)

\(\color{red}{|A| \ = \ 4 \times 3 \ - \ (-8) \times (-2) \ = \ 12 \ - \ 16 \ = \ -4}\)

2) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 7 & 3 \\\ 1 & 6 \end{bmatrix}\)

\(\color{red}{|A| \ = \ 7 \times 6 \ - \ 3 \times 1 \ = \ 42 \ - \ 3 \ = \ 39}\)

3) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 5 & 4 \\\ 2 & -9 \end{bmatrix}\)

\(\color{red}{|A| \ = \ -2 \times (-3) \ - \ 6 \times 5 \ = \ 6 \ - \ 30 \ = \ -24}\)

4) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 0 & -9 \\\ -4 & 1 \end{bmatrix}\)

\(\color{red}{|A| \ = \ 0 \times 1 \ - \ (-9) \times (-4) \ = \ -36}\)

5) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 5 & 7 \\\ 3 & 2 \end{bmatrix}\)

\(\color{red}{|A| \ = \ 5 \times 2 \ - \ 7 \times 3 \ = \ 10 \ - \ 21 \ = \ -11}\)

6) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 9 & 8 \\\ 11 & 7 \end{bmatrix}\)

\(\color{red}{|A| \ = \ 9 \times 7 \ - \ 8 \times 11 \ = \ 63 \ - \ 88 \ = \ -25}\)

7) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 12 & 6 \\\ -4 & 7 \end{bmatrix}\)

\(\color{red}{|A| \ = \ 12 \times 7 \ - \ 6 \times (-4) \ = \ 84 \ - \ (-24) \ = \ 108}\)

8) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 6 & 11 \\\ 9 & 13 \end{bmatrix}\)

\(\color{red}{|A| \ = \ 6 \times 13 \ - \ 11 \times 9 \ = \ 78 \ - \ 99 \ = \ -21}\)

9) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} -5 & 17 \\\ 3 & -4 \end{bmatrix}\)

\(\color{red}{|A| \ = \ -5 \times (-4) \ - \ 17 \times 3 \ = \ 20 \ - \ 51 \ = \ -31}\)

10) Find the determinant of the matrix: \(A \ = \ \begin{bmatrix} 4 & -1 & 8 \\\ 1 & 5 & -2 \\\ -3 & 4 & 6 \end{bmatrix}\)

\(\color{red}{det \begin{bmatrix} 5 & -2 \\\ 4 & 6 \end{bmatrix} \ = \ 38}\)
\(\color{red}{det \begin{bmatrix} 1 & -2 \\\ -3 & 6 \end{bmatrix} \ = \ 0}\)
\(\color{red}{det \begin{bmatrix} 1 & 5 \\\ -3 & 4 \end{bmatrix} \ = \ 19}\)
\(\color{red}{|A| \ = \ 4 \times 38 \ - \ (-1) \times 0 \ + \ 8 \times 19 \ = \ 304}\)

Finding Determinants of a Matrix Practice Quiz