How to Multiply Binomials

How to Multiply Binomials

 Read,4 minutes

The phrase "binomial," as the name implies, is made up of the terms "bi" and "nomial," which relate to a variety of expressions. A binomial is an algebraic or mathematical phrase consisting of two terms linked by a mathematical operation. Furthermore, the binomial terms may include constants, variables, or a mixed term with a co-efficient. Furthermore, the variable's power (let's say xx) in a binomial should be an integer, not a fractional power like the squared or cube root.
For example, 2x13 + 3x2x13 + 3x is not a binomial as the first term has a fraction power of xx.

Degree of a Binomial

Unlike a polynomial, the degree of a binomial is pretty simple to find. Since a binomial consists of only two terms, hence its degree would obviously be the greatest exponent power of that variable. So, for example in the term 4x3 + 3x24x3 + 3x2, we can see that the greatest degree of xx is 33. So, the degree of the binomial is considered as 33.
Now, for a binomial expression with multiple variables, the case becomes quite complex. So, for example, let’s take the multivariable binomial expression 3x2y3 + 4x33x2y3 + 4x3. Now, here we can clearly see that the binomial has 2 different variables as xx and yy. So, what we do here is add up the exponent powers of the separate variables. So, in this case the addition comes as 2 + 3 = 52 + 3 = 5. Hence, the degree of this monomial is 55 (we do not consider the degree of 4x34x3 i.e., 33 since it is lower than the multivariable term degree).

Multiplying Binomials

While multiplying binomials, take note of the following steps:

  • When you are multiplying binomials, always remember the exponents rule. Multiplication always leads to addition of exponent terms of the same variables.
  • Next, you should always use the distributive property while multiplying binomial.
  • Next, apply the FOIL rule which is First Out Last In.

Let’s understand the multiplication of binomials by the following example:

  • (9x  1)(4x + 4) = 36x2 + (36)x + 4x + (4) = 36x2  32x  4(9x  1)(4x + 4) = 36x2 + (36)x + 4x + (4) = 36x2  32x  4

Free printable Worksheets

Exercises for Multiplying Binomials

1) (9x  1)(4x + 4)=(9x  1)(4x + 4)=

2) (9x  8)(3x + 3)=(9x  8)(3x + 3)=

3) (6x  9)(2x + 5)=(6x  9)(2x + 5)=

4) (5x  4)(1x + 1)=(5x  4)(1x + 1)=

5) (3x  2)(6x + 5)=(3x  2)(6x + 5)=

6) (4x  7)(5x + 4)=(4x  7)(5x + 4)=

7) (2x  5)(4x + 4)=(2x  5)(4x + 4)=

8) (1x  10)(6x + 2)=(1x  10)(6x + 2)=

9) (10x  3)(5x + 1)=(10x  3)(5x + 1)=

10) (7x  6)(2x + 2)=(7x  6)(2x + 2)=

 
1) (9x  1)(4x + 4)=(9x  1)(4x + 4)= 36x2 + (36)x + 4x + (4) 36x2 + (36)x + 4x + (4) = 36x2  32x  4 = 36x2  32x  4
2) (9x  8)(3x + 3)=(9x  8)(3x + 3)= 27x2 + (27)x + (24)x + (24) = 27x2  51x  24
3) (6x  9)(2x + 5)= 12x2 + (30)x + (18)x + (45) = 12x2  48x  45
4) (5x  4)(1x + 1)= 5x2 + (5)x + (4)x + (4) = 5x2  9x  4
5) (3x  2)(6x + 5)= 18x2 + (15)x + 12x + (10) = 18x2  3x  10
6) (4x  7)(5x + 4)= 20x2 + (16)x + (35)x + (28) = 20x2  51x  28
7) (2x  5)(4x + 4)= 8x2 + (8)x + 20x + (20) = 8x2 + 12x  20
8) (1x  10)(6x + 2)= 6x2 + (2)x + 60x + (20) = 6x2 + 58x  20
9) (10x  3)(5x + 1)= 50x2 + (10)x + 15x + (3) = 50x2 + 5x  3
10) (7x  6)(2x + 2)= 14x2 + (14)x + 12x + (12) = 14x2  2x  12

Multiplying Binomials Practice Quiz