How to Simplify Radical Expressions Involving Fractions

How to Simplify Radical Expressions Involving Fractions

 Read,2 minutes

Simplifying Radical Expressions Involving Fractions

We have discussed Simplifying Radical Expressions here. Now we are going to learn how to simplify Radical Expressions Involving Fractions.

Step by Step How to Simplify Radical Expressions Involving Fraction

To make fractional radical expressions simpler:

  • If the denominator contains a radical, multiply that radical by the numerator and denominator.
  • Multiply both the numerator and the denominator by the conjugate of the denominator if the denominator contains both a radical and another integer.

Let's see some solved examples that help to understand better.

Example1

Simplify \(\frac{2}{\sqrt{3}}\)

Solution:

Multiply \(\sqrt{3}\) by the numerator and denominator: \(\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \ = \ \frac{2\sqrt{3}}{3}\)

Example2

Simplify \(\frac{5}{1 \ - \ \sqrt{11}}\)

Solution:

Multiply the numerator and denominator by the conjugate of the denominator:

\(\frac{5}{1 \ - \ \sqrt{11}} \times \frac{1 \ + \ \sqrt{11}}{1 \ + \ \sqrt{11}} \ = \ \frac{5 \ + \ 5\sqrt{11}}{1^2 \ + \ (\sqrt{11})^2} \ = \ \frac{5 \ + \ 5\sqrt{11}}{12}\)

Free printable Worksheets

Exercises for Simplifying Radical Expressions Involving Fractions

1) Simplify: \(\frac{\sqrt{125 \ n^5}}{\sqrt{5 \ n}}\)

2) Simplify: \(\frac{\sqrt{108 \ x^{11}}}{\sqrt{6 \ x^2}}\)

3) Simplify: \(\frac{\sqrt{66 \ n^6}}{\sqrt{22 \ n^2}}\)

4) Simplify: \(\frac{5}{\sqrt{3}}\)

5) Simplify: \(\frac{6 \ \sqrt{2x}}{\sqrt{x}}\)

6) Simplify: \(\frac{3 \ \sqrt{72 \ x^3}}{\sqrt{12x}}\)

7) Simplify: \(\frac{\sqrt{70 \ x^7}}{\sqrt{5x^2}}\)

8) Simplify: \(\frac{\sqrt{36 \ x^2}}{\sqrt{12x^5}}\)

9) Simplify: \(\frac{\sqrt{69 \ m^7}}{\sqrt{23 \ m^{12}}}\)

10) Simplify: \(\frac{7}{1 \ + \ \sqrt{z}}\)

 

1) Simplify: \(\frac{\sqrt{125 \ n^5}}{\sqrt{5 \ n}}\)

\(\color{red}{\frac{\sqrt{125 \ n^5}}{\sqrt{5 \ n}} \ = \ \frac{\sqrt{5^2 \times 5 \ n^{2 \times 2} \times n}}{\sqrt{5 \ n}} \ = \ \sqrt{5^2 \ n^{2 \times 2}} \ = \ 5 \ n^2}\)

2) Simplify: \(\frac{\sqrt{108 \ x^{11}}}{\sqrt{6 \ x^2}}\)

\(\color{red}{\frac{\sqrt{108 \ x^{11}}}{\sqrt{6 \ x^2}} \ = \ \frac{\sqrt{3^3 \times 2^2 \ x^{2 \times 4} \times x^2 \times x}}{\sqrt{2 \times 3 \ x^2}} \ = \ \sqrt{3^2 \ x^{2 \times 4} \times x} \ = \ 3 \ x^4 \sqrt{x}}\)

3) Simplify: \(\frac{\sqrt{66 \ n^6}}{\sqrt{22 \ n^2}}\)

\(\color{red}{\frac{\sqrt{66 \ n^6}}{\sqrt{22 \ n^2}} \ = \ \frac{\sqrt{6 \times 11 \ n^{2 \times 3}}}{\sqrt{2 \times 11 \ n^{2 \times 1}}} \ = \ \sqrt{6 \ n^{2 \times 2}} \ = \ n \ \sqrt{6}}\)

4) Simplify: \(\frac{5}{\sqrt{3}}\)

\(\color{red}{\frac{5}{\sqrt{3}} \ = \ \frac{5}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \ = \ \frac{5 \ \sqrt{3}}{3}}\)

5) Simplify: \(\frac{6 \ \sqrt{2x}}{\sqrt{x}}\)

\(\color{red}{\frac{6 \ \sqrt{2x}}{\sqrt{x}} \ = \ \frac{6 \ \sqrt{2x}}{\sqrt{x}} \times \frac{\sqrt{x}}{\sqrt{x}} \ = \ \frac{6 \ \sqrt{2 \ x^2}}{x} \ = \ \frac{6 \ x \ \sqrt{2}}{x} \ = \ 6 \ \sqrt{2}}\)

6) Simplify: \(\frac{3 \ \sqrt{72 \ x^3}}{\sqrt{12x}}\)

\(\color{red}{\frac{3 \ \sqrt{72 \ x^3}}{\sqrt{12x}} \ = \ 3 \ \sqrt{\frac{72 \ x^3}{12x}} \ = \ 3 \ \sqrt{6 \ x^2} \ = \ 3 \ x \ \sqrt{6}}\)

7) Simplify: \(\frac{\sqrt{70 \ x^7}}{\sqrt{5x^2}}\)

\(\color{red}{\frac{\sqrt{70 \ x^7}}{\sqrt{5x^2}} \ = \ \sqrt{\frac{70 \ x^7}{5x^2}} \ = \ \sqrt{14 \ x^5} \ = \ x^2 \ \sqrt{14x}}\)

8) Simplify: \(\frac{\sqrt{36 \ x^2}}{\sqrt{12x^5}}\)

\(\color{red}{\frac{\sqrt{36 \ x^2}}{\sqrt{12x^5}} \ = \ \sqrt{\frac{36 \ x^2}{12x^5}} \ = \ \sqrt{\frac{3}{x^3}} \ = \ \frac{\sqrt{3}}{x \ \sqrt{x}} \ = \ \frac{\sqrt{3}}{x \ \sqrt{x}} \times \frac{\sqrt{x}}{\sqrt{x}} \ = \ \frac{\sqrt{3x}}{x \ \sqrt{x^2}} \ = \ \frac{\sqrt{3x}}{x^2}}\)

9) Simplify: \(\frac{\sqrt{69 \ m^7}}{\sqrt{23 \ m^{12}}}\)

\(\color{red}{\frac{\sqrt{69 \ m^7}}{\sqrt{23 \ m^{12}}} \ = \ \sqrt{\frac{69 \ m^7}{23 \ m^{12}}} \ = \ \sqrt{\frac{3}{m^5}} \ = \ \frac{\sqrt{3}}{m^2 \ \sqrt{m}} \ = \ \frac{\sqrt{3}}{m^2 \ \sqrt{m}} \times \frac{\sqrt{m}}{\sqrt{m}} \ = \ \frac{\sqrt{3m}}{m^2 \ \sqrt{m^2}} \ = \ \frac{\sqrt{3m}}{m^3}}\)

10) Simplify: \(\frac{7}{1 \ + \ \sqrt{z}}\)

\(\color{red}{\frac{7}{1 \ + \ \sqrt{z}} \ = \ \frac{7}{1 \ + \ \sqrt{z}} \times \frac{1 \ - \ \sqrt{z}}{1 \ - \ \sqrt{z}} \ = \ \frac{7 \ - \ 7 \ \sqrt{z}}{1 \ - \ z}}\)

Simplifying Radical Expressions Involving Fractions Practice Quiz