How to Simplify Radical Expressions

How to Simplify Radical Expressions

 Read,5 minutes

Simplifying Radical Expressions

Radical expressions are simplified by taking them down to their simplest form and, if feasible, altogether deleting the radical. When a radical expression appears in the denominator of an algebraic expression, the radical expression is simplified by multiplying the numerator and denominator by the appropriate radical expression (for example, conjugate in the case of a binomial, the same radical in the case of a monomial).

Simplifying Radical Expressions with Square Root

Let's look at an example of simplifying radical expression with square root. Take 2700 as an example. We shall reduce this radical expression to its simplest form until it cannot be reduced any further.

Step1: Factorize the number under the radical.
2700 = 3×3×3×2×2×5×5

Step2: The number under the radical should be written as the product of its factors as powers of 2.
2700 = 32×3×22×52

Step3: Factors that have the power two should be written outside the radical.
2700 = 3×2×5 3

Step4: Simplify the radical to no more simplification is possible.
2700 = 3×2×5 3 = 30 3

Therefore, the radical expression 2700 has been simplified to the its simplest form 30 3.

Simplifying Radical Expressions with Variables 

Similar to how radical expressions with numbers are simplified, radical expressions with variables are also simplified. Along with the numbers, we factor the variables. For a better understanding, let's look at an example of how to simplify radical expressions with variables.

Example: Simplify 175 z2 y3 x4

Step1: Expand the variables and factorize the number under the radical.
175 z2 y3 x4 = 7×5×5×z×z×y×y×y×x×x×x×x×x

Step2: Pair the factors that are the same together.
7×52×z2×y2×y×x2×x2 = 7×52×z2×y2×y×(x2)2

Step3: Radical's components that have the power two should be written outside the radical. Notice that x2 is always positive. Therefore, to make the value non-negative, use the absolute value sign.
175 z2 y3 x4 = 7×52×z2×y2×y×x2×x2 = 5×|z|×|y|×|x2|7y

Step4: Simplify the radical to no more simplification is possible.
175 z2 y3 x4 = 5 |z| |y| x2 7y

Rules for Simplifying Radical Expressions

  • a b = a b
  • ab  = ab , b  0
  • a + b  a + b
  • a  b  a  b

Free printable Worksheets

Exercises for Simplifying Radical Expressions

1) Simplify: 25 n2

2) Simplify: 27 n3 x2

3) Simplify: 576 z7 y5

4) Simplify: 1225 p5 q8

5) Simplify: 108 m6 n9

6) Simplify: 48 r3 t7

7) Simplify: 486 p11 q5

8) Simplify: 450 p14 q9

9) Simplify: 98 r9 t3

10) Simplify: 200 m15 n19

 

1) Simplify: 25 n2

25 n2 = 52×n2 = 5n

2) Simplify: 27 n3 x2

27 n3 x2 = 33×n2×n×x2 = 3 n x3n

3) Simplify: 576 z7 y5

576 z7 y5 = 43×32×z2×3×z×y2×2×y = 4×3 z3 y24 z y = 12 z3 y24 z y

4) Simplify: 1225 p5 q8

1225 p5 q8 = 52×72×p2×2×p×q2×4 = 5×7 p q4p = 21pq4p

5) Simplify: 108 m6 n9

108 m6 n9 = 33×22×m2×3×n×n2×4 = 3×2 m3 n43n = 6 z3 y23n

6) Simplify: 48 r3 t7

48 r3 t7 = 42×3×r2×r×t×t2×3 = 4 r t33 t r

7) Simplify: 486 p11 q5

486 p11 q5 = 35×2×p2×5×p×q2×2×q = 32 p5 q23×2 p q = 9 p5 q26 p q

8) Simplify: 450 p14 q9

450 p14 q9 = 52×32×2×p2×7×q2×4×q = 5×3 p7 q42 q = 15 p7 q42 q

9) Simplify: 98 r9 t3

98 r9 t3 = 72×2×r2×4×r×t2×t = 7 r4 t2 r t

10) Simplify: 200 m15 n19

200 m15 n19 = 52×23×m2×7×m×n2×9×n =  5×2 m7 n92 m n = 10 m7 n92 m n

Simplifying Radical Expressions Practice Quiz