How to Evaluate Logarithms

How to Evaluate Logarithms

 Read,3 minutes

If we know the squares, cubes, and roots of numbers, we can figure out the answers to many logarithms mentally. For example, consider \(log_4 \ 64\). We ask, "How many times do you have to multiply \(4\) to get \(64\)?" Since we already know \(4^3 \ = \ 64\), it stands to reason that \(log_4 \ 64 \ = \ 3\).

Even logarithms that seem more complicated can be worked out without a calculator. For example, let's evaluate \(log_{\frac{5}{6}} \ \frac{125}{216}\) mentally.

We ask, "How many times do you have to multiply \(\frac{5}{6} \ \) to get \(\frac{125}{216} \ \)?"
We know that: \(5^3 \ = \ 125\), \(6^3 \ = \ 216\). So, \(\frac{125}{216} \ = \ (\frac{5}{6} \ )^3\) \(⇒ \ log_{\frac{5}{6}} \ \frac{125}{216} \ = \ 3\)

Steps to Evaluate Logarithms Mentally

Consider: \(log_b \ x \ = \ y\):

  • Rewrite the exponential expression "\(x\)" as a power of "\(b\)": \(b^y \ = \ x\)
  • Use what you know about powers to figure out what \(y\) is by asking, "To what exponent should \(y\) be raised to get \(x\)?"

Learn a few rules about logarithms:

  • \(log_b \ (x) \ = \ \frac{log_d \ (x)}{log_d \ (b)}\)
  • \(log_a \ (x^b) \ = \ b \ log_a \ x\)
  • \(log_a \ 1 \ = \ 0\)
  • \(log_a \ a \ = \ 1\)

Example

Evaluate: \(log_3 \ 243\)

Solution:

Write \(243\) in the form of a power of the base, \(243 \ = \ 3^5\), then: \(log_3 \ 243 \ = \ log_3 \ 3^5\)
Use the log rule: \(log_a \ (x^b) \ = \ b \ log_a \ x\) \(⇒ \ log_3 \ 3^5 \ = \ 5log_3 \ 3\)
Use the log rule: \(log_a \ a \ = \ 1\) \(⇒ \ 5log_3 \ 3 \ = \ 5 \times 1 \ = \ 5\)

Free printable Worksheets

Exercises for Evaluating Logarithms

1) Find the answer: \(log_8 \ 64 \ =\)

2) Find the answer: \(log_{13} \ 169 \ =\)

3) Find the answer: \(log_{25} \ 625 \ =\)

4) Find the answer: \(log_{\frac{1}{3}} \ 729 \ =\)

5) Find the answer: \(log_{\frac{1}{5}} \ 3125 \ =\)

6) Find the answer: \(log_{6} \ 1296 \ =\)

7) Find the answer: \(log_{7} \ 343 \ =\)

8) Find the answer: \(log_4 \ 9 \ =\)

9) Find the answer: \(log_{11} \ 14641 \ =\)

10) Find the answer: \(log_{\frac{1}{17}} \ 289 \ =\)

 

1) Find the answer: \(log_8 \ 64 \ =\)

\(\color{red}{log_8 \ 64 \ = \ log_{2^3} \ 2^6 \ = \ \frac{6}{3} \ log_2 \ 2 \ = \ \frac{6}{3} \ = \ 2}\)

2) Find the answer: \(log_{13} \ 169 \ =\)

\(\color{red}{log_{13} \ 169 \ = \ log_{13} \ 13^2 \ = \ 2 \ log_{13} \ 13 \ = \ 2}\)

3) Find the answer: \(log_{25} \ 625 \ =\)

\(\color{red}{log_{25} \ 625 \ = \ log_{25} \ 25^2 \ = \ 2 \ log_{25} \ 25 \ = \ 2}\)

4) Find the answer: \(log_{\frac{1}{3}} \ 729 \ =\)

\(\color{red}{log_{\frac{1}{3}} \ 729 \ = \ log_{3^{-1}} \ 3^6 \ = \ \frac{6}{-1} \ log_3 \ 3 \ = \ -6}\)

5) Find the answer: \(log_{\frac{1}{5}} \ 3125 \ =\)

\(\color{red}{log_{\frac{1}{5}} \ 3125 \ = \ log_{5^{-1}} \ 5^5 \ = \ \frac{5}{-1} \ log_5 \ 5 \ = \ -5}\)

6) Find the answer: \(log_{6} \ 1296 \ =\)

\(\color{red}{log_{6} \ 1296 \ = \ log_{6} \ 6^4 \ = \ 4 \ log_6 \ 6 \ = \ 4}\)

7) Find the answer: \(log_{7} \ 343 \ =\)

\(\color{red}{log_{7} \ 343 \ = \ log_{7} \ 7^3 \ = \ 3 \ log_7 \ 7 \ = \ 3}\)

8) Find the answer: \(log_4 \ 9 \ =\)

\(\color{red}{log_4 \ 9 \ = \ \frac{log_2 \ 9}{log_2 \ 4} \ = \ \frac{log_2 \ 9}{log_2 \ 2^2} \ = \ \frac{log_2 \ 9}{ 2 \ log_2 \ 2} \ = \ \frac{log_2 \ 9}{2}}\)

9) Find the answer: \(log_{11} \ 14641 \ =\)

\(\color{red}{log_{11} \ 14641 \ = \ log_{11} \ 11^4 \ = \ 4 \ log_{11} \ 11 \ = \ 4}\)

10) Find the answer: \(log_{\frac{1}{17}} \ 289 \ =\)

\(\color{red}{log_{\frac{1}{17}} \ 289 \ = \ log_{17^{-1}} \ 17^2 \ = \ \frac{2}{-1} \ log_{17} \ 17 \ = \ -2}\)

Evaluating Logarithms Practice Quiz