How to Evaluate Logarithms

How to Evaluate Logarithms

 Read,3 minutes

If we know the squares, cubes, and roots of numbers, we can figure out the answers to many logarithms mentally. For example, consider log4 64. We ask, "How many times do you have to multiply 4 to get 64?" Since we already know 43 = 64, it stands to reason that log4 64 = 3.

Even logarithms that seem more complicated can be worked out without a calculator. For example, let's evaluate log56 125216 mentally.

We ask, "How many times do you have to multiply 56  to get 125216 ?"
We know that: 53 = 125, 63 = 216. So, 125216 = (56 )3  log56 125216 = 3

Steps to Evaluate Logarithms Mentally

Consider: logb x = y:

  • Rewrite the exponential expression "x" as a power of "b": by = x
  • Use what you know about powers to figure out what y is by asking, "To what exponent should y be raised to get x?"

Learn a few rules about logarithms:

  • logb (x) = logd (x)logd (b)
  • loga (xb) = b loga x
  • loga 1 = 0
  • loga a = 1

Example

Evaluate: log3 243

Solution:

Write 243 in the form of a power of the base, 243 = 35, then: log3 243 = log3 35
Use the log rule: loga (xb) = b loga x  log3 35 = 5log3 3
Use the log rule: loga a = 1  5log3 3 = 5×1 = 5

Free printable Worksheets

Exercises for Evaluating Logarithms

1) Find the answer: log8 64 =

2) Find the answer: log13 169 =

3) Find the answer: log25 625 =

4) Find the answer: log13 729 =

5) Find the answer: log15 3125 =

6) Find the answer: log6 1296 =

7) Find the answer: log7 343 =

8) Find the answer: log4 9 =

9) Find the answer: log11 14641 =

10) Find the answer: log117 289 =

 

1) Find the answer: log8 64 =

log8 64 = log23 26 = 63 log2 2 = 63 = 2

2) Find the answer: log13 169 =

log13 169 = log13 132 = 2 log13 13 = 2

3) Find the answer: log25 625 =

log25 625 = log25 252 = 2 log25 25 = 2

4) Find the answer: log13 729 =

log13 729 = log31 36 = 61 log3 3 = 6

5) Find the answer: log15 3125 =

log15 3125 = log51 55 = 51 log5 5 = 5

6) Find the answer: log6 1296 =

log6 1296 = log6 64 = 4 log6 6 = 4

7) Find the answer: log7 343 =

log7 343 = log7 73 = 3 log7 7 = 3

8) Find the answer: log4 9 =

log4 9 = log2 9log2 4 = log2 9log2 22 = log2 92 log2 2 = log2 92

9) Find the answer: log11 14641 =

log11 14641 = log11 114 = 4 log11 11 = 4

10) Find the answer: log117 289 =

log117 289 = log171 172 = 21 log17 17 = 2

Evaluating Logarithms Practice Quiz