What is Natural Logarithm

What is Natural Logarithm

 Read,4 minutes

ln(x) - Natural Logarithm

The natural logarithm of a number is its logarithm to the base, e.

What is natural logarithm?

If ey = x, the base e logarithm of x is ln(x) = loge x = y
The e constant also called Euler's number, e = 2.71828183

Inverse Function of Exponential Function - ln

The exponential function ex (f(x) = ex) is the inverse of the natural logarithm function, ln(x) (f1(x) = ln(x)).
For x > 0,

  • f(f1(x)) = eln(x) = x
  • f1(f(x)) = ln(ex) = x

The Rules and Properties of the Natural Logarithm

Product Rule

  • ln (m)(n) = ln (m) + ln (n)
  • The natural log of x times y is the sum of the log of x and y.

Example: ln (7×5) = ln 7 + ln 5

Quotient Rule

  • ln (mn) = ln (m)  ln (n)
  • The natural log of dividing m by n is the difference between the natural log of m and n.

Example: ln (911) = ln (9)  ln (11)

Reciprocal Rule

  • ln (1n) = ln (n)
  • The opposite of the ln of x is the natural log of the reciprocal of x.

Example: ln (110) = ln (10)

Power Rule

  • ln (xy) = yln (x)
  • The natural log of x to the power of y is y multiplied by the natural log of x.

Example: ln 53 = 3ln 5

ln of 0

  • ln 0 is undefined.
  • The natural logarithm of 0 is undefined.

ln of 1

  • ln 1 = 0
  • The natural logarithm of 1 is 0.

ln of e

  • ln (e) = 1
  • "One is the natural logarithm of e."

ln of e raised to the x power

  • ln ex = x
  • The natural logarithm of ex is x

e raised to the ln power

  • eln x = x
  • e raised to the ln power is equal to x.

Free printable Worksheets

Exercises for Natural Logarithms

1) Evaluate without using a calculator: 3 ln e

2) Evaluate without using a calculator: 3 ln e5

3) Evaluate without using a calculator: 9 ln 1e

4) Evaluate without using a calculator: 6 ln 1e5

5) Evaluate without using a calculator: eln 1e

6) Solve for x: ex = 8

7) Solve for x: ln x = 11

8) Solve for x: ln (x + 5) = 20

9) Solve for x: ln (3x  9) = 17

10) Solve for x: ln x = 2 ln 5 + 2 ln 2

 

1) Evaluate without using a calculator: 3 ln e

ln e = loge e = 1  3 ln e = 3

2) Evaluate without using a calculator: 3 ln e5

ln e = loge e = 1  3 ln e5 = 3×5 ln e = 15

3) Evaluate without using a calculator: 9 ln 1e

ln e = loge e = 1  9 ln 1e = 9 ln e = 9

4) Evaluate without using a calculator: 6 ln 1e5

ln e = loge e = 1  6 ln 1e5 = 6 ln e5 = 6×5 ln e = 30

5) Evaluate without using a calculator: eln 1e

eln 1e = 1e

6) Solve for x: ex = 8

ex = 8  ln ex = ln 8  x ln e = ln 8  x = ln 8ln e = ln 8

7) Solve for x: ln x = 11

ln x = 11  eln x = e11  x = e11

8) Solve for x: ln (x + 5) = 20

ln (x + 5) = 20  eln (x + 5) = e20  x + 5 = e20  x = e20  5

9) Solve for x: ln (3x  9) = 17

ln (3x  9) = 17  eln (3x  9) = e17  3x  9 = e17  3x = e17 + 9  x = e17 + 93 = x = 13 e17 + 3

10) Solve for x: ln x = 2 ln 5 + 2 ln 2

ln x = 2 ln 5 + 2 ln 2  eln x = e2 ln 5 + 2 ln 2  eln x = eln 52×22  x = 52×22 = 100

Natural Logarithms Practice Quiz