How to Solve Powers of Products and Quotients

How to Solve Powers of Products and Quotients

 Read,3 minutes

Discovering a Product’s Power

In order to simplify a product’s power in \(2\) exponential expressions, one can utilize the power of a product rule of exponents. This separates the power of a product of factors into the product of the powers of the factors. For example, look at \((pq)^3\). You start via utilizing the associative and commutative properties of multiplication for regrouping the factors.

\((pq)^3 \ = \ (pq) \ \times \ (pq) \ \times \ (pq) \ = \ p \ \times \ p \ \times \ p \ \times \ q \ \times \ q \ \times \ q \ = \ p^3 \ \times \ q^3\)

So, \((pq)^3 \ = \ p^3 \ \times \ q^3\)

THE POWER OF A PRODUCT RULE OF EXPONENTS

With any actual numbers \(a\) as well as \(b\) and any integer \(n\), the power of a product rule of exponents says:

\((ab)^n \ = \ a^n \ \times \ b^n\)

Discovering a Quotient’s Power

In order to simplify the power of a quotient with \(2\) expressions, one can utilize the power of a quotient rule. It says the power of a quotient of factors equals the quotient of the powers of the factors. For instance, here is an example:
\((e^{-2} \ \times \ f^2)^7 \ = \ \frac{f^{14}}{e^{14}}\)
Now redo the original problem in a different way and see the outcome.
\((e^{-2} \ \times \ f^2)^7 \ = \ (\frac{f^2}{e^2} \ )^7 \ = \ \frac{f^{14}}{e^{14}}\)
Based on the last \(2\) steps, it seems one can utilize the power of a product rule for a power of a quotient rule.
\((e^{-2} \ \times \ f^2)^7 \ = \ (\frac{f^2}{e^2} \ )^7 \ = \ \frac{(f^2)^7}{(e^2)^7} \ = \ \frac{f^{2 \times 7}}{e^{2 \times 7}} \ = \ \frac{f^{14}}{e^{14}}\)

THE POWER OF A QUOTIENT RULE OF EXPONENTS

With any true numbers \(a\) and \(b\) and any integer \(n\), the power of a quotient rule of exponents says that: \((\frac{a}{b} \ )^n \ = \ \frac{a^n}{b^n}\)

Free printable Worksheets

Exercises for Powers of Products and Quotients

1) \( (-3x^2x^2)^{3} = \)

2) \( (4x^2x^2)^{3} = \)

3) \( (-9x^3y)^{2} = \)

4) \( (6x^2)^{3} = \)

5) \( (-9x^2)^{3} = \)

6) \( (-2x^4y)^{2} = \)

7) \( (-x^3y)^{2} = \)

8) \( (-8x^2)^{3} = \)

9) \( (6x^4y)^{3} = \)

10) \( (-x^3)^{2} = \)

 
1) \( (-3x^2x^2)^{3} = \)\( \ \color{red}{(-3^3)x^{(2 \times 3)}x^{(2 \times 3)}}\)\( \ \color{red}{= -27x^{12}}\)
2) \( (4x^2x^2)^{3} = \)\( \ \color{red}{(4^3)x^{(2 \times 3)}x^{(2 \times 3)}}\)\( \ \color{red}{= 64x^{12}}\)
3) \( (-9x^3y)^{2} = \)\( \ \color{red}{(-9^2)x^{(3 \times 2)}y^{2}}\)\( \ \color{red}{= 81x^{6}y^{2}}\)
4) \( (6x^2)^{3} = \)\( \ \color{red}{(6^3)x^{(2 \times 3)}}\)\( \ \color{red}{= 216x^{6}}\)
5) \( (-9x^2)^{3} = \)\( \ \color{red}{(-9^3)x^{(2 \times 3)}}\)\( \ \color{red}{= -729x^{6}}\)
6) \( (-2x^4y)^{2} = \)\( \ \color{red}{(-2^2)x^{(4 \times 2)}y^{2}}\)\( \ \color{red}{= 4x^{8}y^{2}}\)
7) \( (-x^3y)^{2} = \)\( \ \color{red}{(-1^2)x^{(3 \times 2)}y^{2}}\)\( \ \color{red}{= x^{6}y^{2}}\)
8) \( (-8x^2)^{3} = \)\( \ \color{red}{(-8^3)x^{(2 \times 3)}}\)\( \ \color{red}{= -512x^{6}}\)
9) \( (6x^4y)^{3} = \)\( \ \color{red}{(6^3)x^{(4 \times 3)}y^{3}}\)\( \ \color{red}{= 216x^{12}y^{3}}\)
10) \( (-x^3)^{2} = \)\( \ \color{red}{(-1^2)x^{(3 \times 2)}}\)\( \ \color{red}{= x^{6}}\)

Powers of Products and Quotients Quiz