How to Solve Quadratic Inequalities

How to Solve Quadratic Inequalities

 Read,5 minutes

A quadratic inequality has two roots, or x-intercepts because it has an x2 term. You get a parabola when you plot this inequality on a coordinate plane. Finding the values of x that make the inequality true is what it means to solve an inequality. By drawing the inequality, you can show these solutions in algebra or on a number line or coordinate plane.

Follow these steps to figure out how to solve a quadratic inequality:

  • Step1:
    Solve the inequality as if it were an equation.
  • Step2:
    The boundary points for the solution to the inequality are the real answers to the equation.
  • Step3:
    If the original inequality did not include equality, make the boundary points open circles. If it did, make the boundary points solid circles.
  • Step4:
    Choose points from each of the areas that the boundary points make. Change these "test points" in the original inequality.
  • Step5:
    If a test point meets the original inequality, then the area that contains that test point is part of the solution.
  • Step6:
    Show the solution both as a picture and as a solution set.

Example:

Solve (x + 1) (2x  4) < 0.

Figure out (x + 1) (2x  4) = 0. Using the zero-product property,

(x + 1) = 0 or (2x  4) = 0  x = 1 , x = 2

Make the points of the border. Here, the boundary points are open circles because the original inequality doesn't include equality.

Points of the border:

Quadratic Inequality

There are now three different areas:

Quadratic Inequality2

Choose test points from these three areas: x = 3 , x = 0 , x = 3

Check to see if the test points meet the first inequality.

  • x = 3  (3 + 1) (2(3)  4) < 0  (2)(10) < 0  20 < 0
  • x = 0  (0 + 1) (2(0)  4) < 0  (1)(4) < 0  4 < 0
  • x = 3  (3 + 1) (2(3)  4) < 0  (4)(2) < 0  8 < 0

Since x = 0 solves the original problem, the area 1 < x < 2 is part of the answer. Since x = 3 doesn't solve the original problem, the area x < 1 isn't part of the answer. Since x = 3 doesn't solves the original problem, the area x > 2 isn't part of the answer. Now show the solution in a graphic form and a solution set.

The graphic form:

Quadratic Inequality3

The form of the solution set: {x | 1 < x < 2}

Free printable Worksheets

Exercises for Solving Quadratic Inequalities

1) Solve: (2x + 2)(3x  6) > 0

2) Solve: (2x + 6)(3x  12) < 0

3) Solve: (2x + 6)(4x + 4) < 0

4) Solve: 2x2  10x + 8 < 0

5) Solve: 3x2 + 12x + 9 > 0

6) Solve: x2  1 > 0

7) Solve: x2  4 < 0

8) Solve: (2x + 2)(3x  6) < 0

9) Solve: x2  x  12 > 0

10) Solve: (x  1)(x + 3) > 0

 

1) Solve: (2x + 2)(3x  6) > 0

x1 = 1, x2 = 2
Quadratic Inequalities
Test points: x = 2, x = 0,x = 3
So,  x < 1, x > 2 is the solution.
Solution set: {x | x < 1, x > 2}

2) Solve: (2x + 6)(3x  12) < 0

x1 = 3, x2 = 4
Quadratic Inequalities2
Test points: x = 4, x = 0,x = 5
So,  3 < x < 4 is the solution.
Solution set: {x | 3 < x < 4}

3) Solve: (2x + 6)(4x + 4) < 0

x1 = 3, x2 = 1
Quadratic Inequalities3

Test points: x = 2, x = 0,x = 4
So,  x < 1, x > 3 is the solution.
Solution set: {x | x < 1, x > 3}

4) Solve: 2x2  10x + 8 < 0

x1 = 1, x2 = 4
Quadratic Inequalities4
Test points:
x = 0, x = 2,x = 5
So,  1 < x < 4 is the solution.
Solution set: {x | 1 < x < 4}

5) Solve: 3x2 + 12x + 9 > 0

x1 = 1, x2 = 3
Quadratic Inequalities5
Test points: x = 4, x = 2,x = 0
So,  x < 3, x > 4 is the solution.
Solution set: {x | x < 3, x > 4}

6) Solve: x2  1 > 0

x1 = 1, x2 = 1
Quadratic_Inequalities6
Test points:
x = 2, x = 0,x = 2
So,  x < 1, x > 1 is the solution.
Solution set: {x | x < 1, x > 1}

7) Solve: x2  4 < 0

x1 = 2, x2 = 2
Quadratic Inequalities7
Test points:
x = 3, x = 0,x = 3
So,  2 < x < 2 is the solution.
Solution set: {x | 2 < x < 2}

8) Solve: (2x + 2)(3x  6) < 0

x1 = 1, x2 = 2
Quadratic Inequalities
Test points: x = 2, x = 0,x = 3
So,  1 < x < 2 is the solution.
Solution set: {x | 1 < x < 2}

9) Solve: x2  x  12 > 0

x1 = 3, x2 = 4
Quadratic Inequalities2
Test points: x = 4, x = 0,x = 5
So,  x < 3, x > 4 is the solution.
Solution set: {x | x < 3, x > 4}

10) Solve: (x  1)(x + 3) > 0

x1 = 1, x2 = 3
Quadratic Inequalities5
Test points: x = 4, x = 2,x = 0
So,  3 < x < 1 is the solution.
Solution set: {x | 3 < x < 1}

Solve Quadratic Inequalities Practice Quiz