1) Find the value of the discriminant: 3x^2 \ - \ 4x \ + \ 1 \ = \ 0
\color{red}{3x^2 \ - \ 4x \ + \ 1 \ = \ 0 \ ⇒ \ a \ = \ 3, \ b \ = \ -4, \ c \ = \ 1}
\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ (-4)^2 \ - \ 4(3)(1) \ = \ 16 \ - \ (12) \ = \ 4}
\color{red}{Δ \ > \ 0 \ ⇒} Two real solutions
2) Find the value of the discriminant: 5x^2 \ + \ 2x \ + \ 3 \ = \ 0
\color{red}{5x^2 \ + \ 2x \ + \ 3 \ = \ 0 \ ⇒ \ a \ = \ 5, \ b \ = \ 2, \ c \ = \ 3}
\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ (2)^2 \ - \ 4(5)(3) \ = \ 4 \ - \ (60) \ = \ -56}
\color{red}{Δ \ < \ 0 \ ⇒} Two complex solutions
3) Find the value of the discriminant: x^2 \ - \ 3x \ + \ 4 \ = \ 0
\color{red}{x^2 \ - \ 3x \ + \ 4 \ = \ 0 \ ⇒ \ a \ = \ 1, \ b \ = \ -3, \ c \ = \ 4}
\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ (-3)^2 \ - \ 4(1)(4) \ = \ 9 \ - \ 16 \ = \ -7}
\color{red}{Δ \ < \ 0 \ ⇒} Two complex solutions
4) Find the value of the discriminant: -2x^2 \ + \ 3x \ + \ 4 \ = \ 0
\color{red}{-2x^2 \ + \ 3x \ + \ 4 \ = \ 0 \ ⇒ \ a \ = \ -2, \ b \ = \ 3, \ c \ = \ 4}
\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ 3^2 \ - \ 4(-2)(4) \ = \ 9 \ - \ (-32) \ = \ 41}
\color{red}{Δ \ > \ 0 \ ⇒} Two real solutions
5) Find the value of the discriminant: x^2 \ + \ 2x \ + \ 1 \ = \ 0
\color{red}{x^2 \ + \ 2x \ + \ 1 \ = \ 0 \ ⇒ \ a \ = \ 1, \ b \ = \ 2, \ c \ = \ 1}
\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ 2^2 \ - \ 4(1)(1) \ = \ 4 \ - \ 4 \ = \ 0}
\color{red}{Δ \ = \ 0 \ ⇒} One real solutions
6) Find the value of the discriminant: -5x^2 \ - \ 10x \ - \ 5 \ = \ 0
\color{red}{x^2 \ + \ 2x \ + \ 1 \ = \ 0 \ ⇒ \ a \ = \ -5, \ b \ = \ -10, \ c \ = \ -5}
\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ (-10)^2 \ - \ 4(-5)(-5) \ = \ 100 \ - \ 100 \ = \ 0}
\color{red}{Δ \ = \ 0 \ ⇒} One real solutions
7) Find the value of the discriminant: 10x^2 \ + \ 6x \ - \ 2 \ = \ 0
\color{red}{10x^2 \ + \ 6x \ - \ 2 \ = \ 0 \ ⇒ \ a \ = \ 10, \ b \ = \ 6, \ c \ = \ -2}
\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ 6^2 \ - \ 4(10)(-2) \ = \ 36 \ - \ (-80) \ = \ 116}
\color{red}{Δ \ > \ 0 \ ⇒} Two real solutions
8) Find the value of the discriminant: -6x^2 \ + \ 8x \ + \ 5 \ = \ 0
\color{red}{-6x^2 \ + \ 8x \ + \ 5 \ = \ 0 \ ⇒ \ a \ = \ -6, \ b \ = \ 8, \ c \ = \ 5}
\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ 8^2 \ - \ 4(-6)(5) \ = \ 64 \ - \ (-120) \ = \ 184}
\color{red}{Δ \ > \ 0 \ ⇒} Two real solutions
9) Find the value of the discriminant: 5x^2 \ - \ 7x \ + \ 4 \ = \ 0
\color{red}{5x^2 \ - \ 7x \ + \ 4 \ = \ 0 \ ⇒ \ a \ = \ 5, \ b \ = \ -7, \ c \ = \ 4}
\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ (-7)^2 \ - \ 4(5)(4) \ = \ 49 \ - \ 80 \ = \ -31}
\color{red}{Δ \ < \ 0 \ ⇒} Two complex solutions
10) Find the value of the discriminant: -4x^2 \ + \ 6x \ - \ 3 \ = \ 0
\color{red}{-4x^2 \ + \ 6x \ - \ 3 \ = \ 0 \ ⇒ \ a \ = \ -4, \ b \ = \ 6, \ c \ = \ -3}
\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ 6^2 \ - \ 4(-4)(-3) \ = \ 36 \ - \ 48 \ = \ -12}
\color{red}{Δ \ < \ 0 \ ⇒} Two complex solutions