1) Find the value of the discriminant: 3x2 − 4x + 1 = 0
3x2 − 4x + 1 = 0 ⇒ a = 3, b = −4, c = 1
Δ = b2 − 4ac = (−4)2 − 4(3)(1) = 16 − (12) = 4
Δ > 0 ⇒ Two real solutions
2) Find the value of the discriminant: 5x2 + 2x + 3 = 0
5x2 + 2x + 3 = 0 ⇒ a = 5, b = 2, c = 3
Δ = b2 − 4ac = (2)2 − 4(5)(3) = 4 − (60) = −56
Δ < 0 ⇒ Two complex solutions
3) Find the value of the discriminant: x2 − 3x + 4 = 0
x2 − 3x + 4 = 0 ⇒ a = 1, b = −3, c = 4
Δ = b2 − 4ac = (−3)2 − 4(1)(4) = 9 − 16 = −7
Δ < 0 ⇒ Two complex solutions
4) Find the value of the discriminant: −2x2 + 3x + 4 = 0
−2x2 + 3x + 4 = 0 ⇒ a = −2, b = 3, c = 4
Δ = b2 − 4ac = 32 − 4(−2)(4) = 9 − (−32) = 41
Δ > 0 ⇒ Two real solutions
5) Find the value of the discriminant: x2 + 2x + 1 = 0
x2 + 2x + 1 = 0 ⇒ a = 1, b = 2, c = 1
Δ = b2 − 4ac = 22 − 4(1)(1) = 4 − 4 = 0
Δ = 0 ⇒ One real solutions
6) Find the value of the discriminant: −5x2 − 10x − 5 = 0
x2 + 2x + 1 = 0 ⇒ a = −5, b = −10, c = −5
Δ = b2 − 4ac = (−10)2 − 4(−5)(−5) = 100 − 100 = 0
Δ = 0 ⇒ One real solutions
7) Find the value of the discriminant: 10x2 + 6x − 2 = 0
10x2 + 6x − 2 = 0 ⇒ a = 10, b = 6, c = −2
Δ = b2 − 4ac = 62 − 4(10)(−2) = 36 − (−80) = 116
Δ > 0 ⇒ Two real solutions
8) Find the value of the discriminant: −6x2 + 8x + 5 = 0
−6x2 + 8x + 5 = 0 ⇒ a = −6, b = 8, c = 5
Δ = b2 − 4ac = 82 − 4(−6)(5) = 64 − (−120) = 184
Δ > 0 ⇒ Two real solutions
9) Find the value of the discriminant: 5x2 − 7x + 4 = 0
5x2 − 7x + 4 = 0 ⇒ a = 5, b = −7, c = 4
Δ = b2 − 4ac = (−7)2 − 4(5)(4) = 49 − 80 = −31
Δ < 0 ⇒ Two complex solutions
10) Find the value of the discriminant: −4x2 + 6x − 3 = 0
−4x2 + 6x − 3 = 0 ⇒ a = −4, b = 6, c = −3
Δ = b2 − 4ac = 62 − 4(−4)(−3) = 36 − 48 = −12
Δ < 0 ⇒ Two complex solutions