1) Solve: \(x^2 \ + \ 9x \ + \ 20 \ = \ 0\)
\(\color{red}{x^2 \ + \ 2x \ - \ 3 \ = \ 0 \ ⇒ \ (x \ + \ 4)(x \ + \ 5) \ = \ 0}\)
- \(\color{red}{(x \ + \ 4) \ = \ 0 \ ⇒ \ x \ = \ -4}\)
- \(\color{red}{(x \ + \ 5) \ = \ 0 \ ⇒ \ x \ = \ -5}\)
\(\color{red}{x_1 \ = \ -4 \ , \ x_2 \ = \ -5}\)
2) Solve: \(x^2 \ + \ 2x \ - \ 3 \ = \ 0\)
\(\color{red}{x^2 \ + \ 9x \ + \ 20 \ = \ 0 \ ⇒ \ a \ = \ 1, \ b \ = \ 2, \ c \ = \ -3}\)
\(\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ 2^2 \ - \ 4(1)(-3) \ = \ 4 \ - \ (-12) \ = \ 16}\)
\(\color{red}{x \ = \ \frac{-b \ ± \ \sqrt{Δ}}{2a} \ = \ \frac{-2 \ ± \ \sqrt{16}}{2} \ ⇒}\) \(\color{red}{x_1 \ = \ \frac{-2 \ - \ 4}{2} \ = \ -\frac{6}{2} \ = \ -3 \ , \ }\)\(\color{red}{x_2 \ = \ \frac{-2 \ + \ 4}{2} \ = \ \frac{2}{2} \ = \ 1}\)
3) Solve: \(2x^2 \ + \ 7x \ - \ 4 \ = \ 0\)
\(\color{red}{x^2 \ + \ 9x \ + \ 20 \ = \ 0 \ ⇒ \ a \ = \ 2, \ b \ = \ 7, \ c \ = \ -4}\)
\(\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ 7^2 \ - \ 4(2)(-4) \ = \ 49 \ - \ (-32) \ = \ 81}\)
\(\color{red}{x \ = \ \frac{-b \ ± \ \sqrt{Δ}}{2a} \ = \ \frac{-7 \ ± \ \sqrt{81}}{4} \ ⇒}\) \(\color{red}{x_1 \ = \ \frac{-7 \ - \ 9}{4} \ = \ -\frac{16}{4} \ = \ -4 \ , \ }\)\(\color{red}{x_2 \ = \ \frac{-7 \ + \ 9}{4} \ = \ \frac{2}{4} \ = \ \frac{1}{2}}\)
4) Solve: \(2x^2 \ + \ 4x \ + \ 2 \ = \ 0\)
\(\color{red}{2x^2 \ + \ 4x \ + \ 2 \ = \ 0 \ ⇒ \ 2x^2 \ + \ 2x \ + \ 2x \ + \ 2 \ = \ 0 \ ⇒ \ 2x(x \ + \ 1) \ + \ 2(x \ + \ 1) \ = \ 0}\) \(\color{red}{⇒ \ (x \ + \ 1)(2x \ + \ 2) \ = \ 0}\)
- \(\color{red}{(x \ + \ 1) \ = \ 0 \ ⇒ \ x \ = \ -1}\)
- \(\color{red}{(2x \ + \ 2) \ = \ 0 \ ⇒ \ x \ = \ -1}\)
\(\color{red}{x_1 \ = \ x_2 \ = \ -1}\)
5) Solve: \(18x^2 \ - \ 13x \ + \ 2 \ = \ 0\)
\(\color{red}{18x^2 \ - \ 13x \ + \ 2 \ = \ 0 \ ⇒ \ a \ = \ 18, \ b \ = \ -13, \ c \ = \ 2}\)
\(\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ (-13)^2 \ - \ 4(18)(2) \ = \ 169 \ - \ 144 \ = \ 25}\)
\(\color{red}{x \ = \ \frac{-b \ ± \ \sqrt{Δ}}{2a} \ = \ \frac{13 \ ± \ \sqrt{25}}{36} \ ⇒}\) \(\color{red}{x_1 \ = \ \frac{13 \ - \ 5}{36} \ = \ \frac{8}{36} \ = \ \frac{2}{9} \ , \ }\) \(\color{red}{x_2 \ = \ \frac{13 \ + \ 5}{36} \ = \ \frac{18}{36} \ = \ \frac{1}{2}}\)
6) Solve: \(5x^2 \ + \ 27x \ - \ 18 \ = \ 0\)
\(\color{red}{5x^2 \ + \ 27x \ - \ 18 \ = \ 0 \ ⇒ \ a \ = \ 5, \ b \ = \ 27, \ c \ = \ -18}\)
\(\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ (27)^2 \ - \ 4(5)(-18) \ = \ 729 \ - \ (-360) \ = \ 1089}\)
\(\color{red}{x \ = \ \frac{-b \ ± \ \sqrt{Δ}}{2a} \ = \ \frac{-27 \ ± \ \sqrt{1089}}{10} \ ⇒}\) \(\color{red}{x_1 \ = \ \frac{-27 \ - \ 33}{10} \ = \ \frac{60}{10} \ = \ 6 \ , \ }\)\(\color{red}{x_2 \ = \ \frac{-27 \ + \ 33}{10} \ = \ \frac{6}{10} \ = \ 0.6}\)
7) Solve: \(2x^2 \ + \ 7x \ + \ 3 \ = \ 0\)
\(\color{red}{2x^2 \ + \ 7x \ + \ 3 \ = \ 0 \ ⇒ \ 2x^2 \ + \ 6x \ + \ x \ + \ 3 \ = \ 0 \ ⇒ \ 2x(x \ + \ 3) \ + \ 1(x \ + \ 3) \ = \ 0}\) \(\color{red}{⇒ \ (2x \ + \ 1)(x \ + \ 3) \ = \ 0}\)
- \(\color{red}{(2x \ + \ 1) \ = \ 0 \ ⇒ \ x \ = \ -\frac{1}{2}}\)
- \(\color{red}{(x \ + \ 3) \ = \ 0 \ ⇒ \ x \ = \ -3}\)
\(\color{red}{x_1 \ = \ -\frac{1}{2} \ , \ x_2 \ = \ -3}\)
8) Solve: \(-6x^2 \ + \ 29x \ - \ 35 \ = \ 0\)
\(\color{red}{-6x^2 \ + \ 29x \ - \ 35 \ = \ 0 \ ⇒ \ -6x^2 \ + \ 14x \ + \ 15x \ - \ 35 \ = \ 0}\) \(\color{red}{ \ ⇒ \ -2x(3x \ - \ 7) \ + \ 5(3x \ - \ 7) \ = \ 0⇒ \ (-2x \ + \ 5)(3x \ - \ 7) \ = \ 0}\)
- \(\color{red}{(-2x \ + \ 5) \ = \ 0 \ ⇒ \ x \ = \ \frac{5}{2} \ = \ 2.5}\)
- \(\color{red}{(3x \ - \ 7) \ = \ 0 \ ⇒ \ x \ = \ \frac{7}{3}}\)
\(\color{red}{x_1 \ = \ 2.5 \ , \ x_2 \ = \ \frac{7}{3}}\)
9) Solve: \(4x^2 \ + \ 8x \ + \ 3 \ = \ 0\)
\(\color{red}{4x^2 \ + \ 8x \ + \ 3 \ = \ 0 \ ⇒ \ a \ = \ 4, \ b \ = \ 8, \ c \ = \ 3}\)
\(\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ (8)^2 \ - \ 4(4)(3) \ = \ 64 \ - \ 48 \ = \ 16}\)
\(\color{red}{x \ = \ \frac{-b \ ± \ \sqrt{Δ}}{2a} \ = \ \frac{-8 \ ± \ \sqrt{16}}{8} \ ⇒}\) \(\color{red}{x_1 \ = \ \frac{-8 \ - \ 4}{8} \ = \ -\frac{12}{8} \ = \ -\frac{3}{2} \ , \ }\) \(\color{red}{x_2 \ = \ \frac{-8 \ + \ 4}{8} \ = \ -\frac{4}{8} \ = \ -\frac{1}{2}}\)
10) Solve: \(x^2 \ + \ 3x \ - \ 4 \ = \ 0\)
\(\color{red}{x^2 \ + \ 3x \ - \ 4 \ = \ 0 \ ⇒ \ a \ = \ 1, \ b \ = \ 3, \ c \ = \ -4}\)
\(\color{red}{Δ \ = \ b^2 \ - \ 4ac \ = \ (3)^2 \ - \ 4(1)(-4) \ = \ 9 \ + \ 16 \ = \ 25}\)
\(\color{red}{x \ = \ \frac{-b \ ± \ \sqrt{Δ}}{2a} \ = \ \frac{-3 \ ± \ \sqrt{25}}{2} \ ⇒}\) \(\color{red}{x_1 \ = \ \frac{-3 \ - \ 5}{2} \ = \ -\frac{9}{2} \ = \ -4.5 \ , \ }\) \(\color{red}{x_2 \ = \ \frac{-3 \ + \ 5}{2} \ = \ \frac{2}{2} \ = \ 1}\)