1) Find the explicit formula: \(5, \ 14, \ 23, \ 32, \ 41, \ ...\)
\(\color{red}{a_1 \ = \ 5, \ d \ = \ 14 \ - \ 5 \ = \ 9, \ a_n \ = \ a_1 \ + \ d \ (n \ – \ 1)}\)
\(\color{red}{⇒ \ a_n \ = \ 5 \ + \ 9 \ (n \ – \ 1)}\)
2) Find the explicit formula: \(-7, \ -2, \ 3, \ 8, \ 13, \ ...\)
\(\color{red}{a_1 \ = \ -7, \ d \ = \ -2 \ - \ (-7) \ = \ 5, \ a_n \ = \ a_1 \ + \ d \ (n \ – \ 1)}\)
\(\color{red}{⇒ \ a_n \ = \ -7 \ + \ 5 \ (n \ – \ 1)}\)
3) Find the explicit formula and \(a_{12}\): \(-22, \ -16, \ -10, \ -4, \ 2, \ ...\)
\(\color{red}{a_1 \ = \ -22, \ d \ = \ -16 \ - \ (-22) \ = \ 6, \ a_n \ = \ a_1 \ + \ d \ (n \ – \ 1)}\)
\(\color{red}{⇒ \ a_n \ = \ -22 \ + \ 6 \ (n \ – \ 1) \ ⇒ \ a_{12} \ = \ -22 \ + \ 6 \ (12 \ – \ 1) \ = \ 44}\)
4) Find the explicit formula and \(a_{21}\): \(a_{30} \ = \ 72, \ d \ = \ -5\)
\(\color{red}{a_{30} \ = \ 72, \ d \ = \ -5, \ a_n \ = \ a_1 \ + \ d \ (n \ – \ 1)}\)
\(\color{red}{⇒ \ a_{30} \ = \ a_1 \ + \ (-5) \ (30 \ – \ 1) \ ⇒ \ a_1 \ = \ a_{30} \ + \ 5(29) \ = \ 72 \ + \ 145 \ = \ 217}\)
\(\color{red}{⇒ \ a_n \ = \ 217 \ - \ 5 \ (n \ – \ 1) \ ⇒ \ a_{21} \ = \ 217 \ - \ 5(20) \ = \ 117}\)
5) Find the first \(10\) terms: \(a_{15} \ = \ 50, \ d \ = \ 4.5\)
\(\color{red}{a_{15} \ = \ 50, \ d \ = \ 4.5, \ a_n \ = \ a_1 \ + \ d \ (n \ – \ 1)}\)
\(\color{red}{⇒ \ a_{15} \ = \ a_1 \ + \ 4.5 \ (15 \ – \ 1) \ ⇒ \ a_1 \ = \ 50 \ - \ 4.5(14) \ = \ -13}\)
\(\color{red}{⇒ -13, \ -8.5, \ -4, \ 0.5, \ 5, \ 9.5, \ 14, \ 18.5, \ 23, \ 27.5, \ ...}\)
6) Find the first \(7\) terms: \(a_{41} \ = \ 178, \ d \ = \ 4\)
\(\color{red}{a_{41} \ = \ 178, \ d \ = \ 4, \ a_n \ = \ a_1 \ + \ d \ (n \ – \ 1)}\)
\(\color{red}{⇒ \ a_{41} \ = \ a_1 \ + \ 4 \ (41 \ – \ 1) \ ⇒ \ a_1 \ = \ 178 \ - \ 4(40) \ = \ 18}\)
\(\color{red}{⇒ 18, \ 22, \ 26, \ 30, \ 34, \ 38, \ 42, \ ...}\)
7) Find \(a_{30}\): \(45, \ , \ 41.8, \ 38.6, \ 35.4, \ ...\)
\(\color{red}{a_1 \ = \ 45, \ d \ = \ 41.8 \ - \ 45 \ = \ -3.2, \ a_n \ = \ a_1 \ + \ d \ (n \ – \ 1)}\)
\(\color{red}{⇒ \ a_n \ = \ 45 \ - \ 3.2 \ (n \ – \ 1) \ ⇒ \ a_{30} \ = \ 45 \ - \ 3.2 \ (30 \ – \ 1) \ = \ -47.8}\)
8) Find \(a_{27}\): \(a_{41} \ = \ 167, \ d \ = \ 6.4\)
\(\color{red}{a_{41} \ = \ 167, \ d \ = \ 6.4, \ a_n \ = \ a_1 \ + \ d \ (n \ – \ 1)}\)
\(\color{red}{⇒ \ a_{41} \ = \ a_1 \ + \ 6.4 \ (41 \ – \ 1) \ ⇒ \ a_1 \ = \ 167 \ - \ 6.4(40) \ = \ -98}\)
\(\color{red}{⇒ \ a_n \ = \ -98 \ + \ 6.4 \ (n \ – \ 1) \ ⇒ \ a_{27} \ = \ -98 \ + \ 6.4(26) \ = \ 68.4}\)
9) Find the explicit formula and the sum of the first five terms: \(a_1 \ = \ 10, \ d \ = \ 3\)
\(\color{red}{a_1 \ = \ 10, \ d \ = \ 3, \ a_n \ = \ a_1 \ + \ d \ (n \ – \ 1)}\)
\(\color{red}{⇒ \ a_n \ = \ 10 \ + \ 3 \ (n \ – \ 1)}\)
\(\color{red}{\sum_{k \ = \ 0}^{n \ - \ 1} \ (a \ + \ kd) \ = \ \frac{n}{2} \ (2a \ + \ (n \ - \ 1)d)}\)
\(\color{red}{⇒ \ \sum_{k \ = \ 0}^{4} \ (10 \ + \ 3k) \ = \ \frac{5}{2} \ (20 \ + \ (4)3) \ = \ \frac{5}{2} \times (32) \ = \ 80}\)
10) Find the explicit formula and the sum of the first \(16\) terms: \(-55, \ -48, \ -41, \ -34, \ -27, \ ...\)
\(\color{red}{a_1 \ = \ -55, \ d \ = \ -48 \ - \ (-55) \ = \ 7, \ a_n \ = \ a_1 \ + \ d \ (n \ – \ 1)}\)
\(\color{red}{⇒ \ a_n \ = \ -55 \ + \ 7 \ (n \ – \ 1)}\)
\(\color{red}{\sum_{k \ = \ 0}^{n \ - \ 1} \ (a \ + \ kd) \ = \ \frac{n}{2} \ (2a \ + \ (n \ - \ 1)d)}\)
\(\color{red}{⇒ \ \sum_{k \ = \ 0}^{15} \ (-55 \ + \ 7k) \ = \ \frac{16}{2} \ (-110 \ + \ (15)7) \ = \ 8 \times (-5) \ = \ -40}\)