How to Solve Finite Geometric Series

How to Solve Finite Geometric Series

 Read,3 minutes

Finite Geometric Series

There are a finite set of numbers in a finite geometric series. This means there will be a first and last term for the series. Finite geometric series are convergent.

Finite Geometric Formula

Use the formula to find the sum of a finite geometric series. \(S_n \ = \ \frac{a(r^n \ - \ 1)}{r \ - \ 1}\), when \(r \ ≠ \ 1\)

Where \(a\) is the first term, \(n\) is the number of terms, and \(r\) is the common ratio.

Example

Find the total of the first \(6\) terms of the geometric series if \(a \ = \ 5\) and \(r \ = \ 3\).

\(S_n \ = \ \frac{a(r^n \ - \ 1)}{r \ - \ 1} \ ⇒ \ \frac{5(3^6 \ - \ 1)}{3 \ - \ 1} \ = \ 1820\)

Free printable Worksheets

Exercises for Finite Geometric Series

1) Evaluate the geometric series described: \(-5, \ 15, \ -45, \ 135, \ -405, \ ..., \ n \ = \ 7\)

2) Evaluate the geometric series described: \(9, \ 18, \ , \ 36, \ 72, \ ..., \ n \ = \ 9\)

3) Evaluate the geometric series described: \(\sum_{n \ = \ 1}^{n \ = \ 9} \ 7(-2)^{n \ - \ 1}\)

4) Evaluate the geometric series described: \(\sum_{n \ = \ 1}^{n \ = \ 5} \ 5(3)^{n \ - \ 1}\)

5) Evaluate the geometric series described: \(\sum_{n \ = \ 1}^{n \ = \ 6} \ 3(-\frac{1}{2})^{n \ - \ 1}\)

6) Evaluate the geometric series described: \(\sum_{n \ = \ 1}^{n \ = \ 4} \ 8(\frac{1}{3})^{n \ - \ 1}\)

7) Evaluate the geometric series described: \(1, \ 4, \ 16, \ 64, \ 256, \ ..., \ n \ = \ 6\)

8) Evaluate the geometric series described: \(1024, \ 256, \ 64, \ 16, \ 4, \ ..., \ n \ = \ 6\)

9) Evaluate the geometric series described: \(7, \ 14, \ 28, \ 56, \ 112, \ ..., \ n \ = \ 4\)

10) Evaluate the geometric series described: \(54, \ 18, \ 6, \ 2, \ \frac{2}{3}, \ ..., \ n \ = \ 4\)

 

1) Evaluate the geometric series described: \(-5, \ 15, \ -45, \ 135, \ -405, \ ..., \ n \ = \ 7\)

\(\color{red}{r \ = \ \frac{15}{-5} \ = \ -3}\)
\(\color{red}{S_n \ = \ \frac{a(r^n \ - \ 1)}{r \ - \ 1} \ = \ \frac{-5((-3)^7 \ - \ 1)}{-3 \ - \ 1} \ = \ \frac{-5(-2187 \ - \ 1)}{-3 \ - \ 1} \ = \ 2735}\)

2) Evaluate the geometric series described: \(9, \ 18, \ , \ 36, \ 72, \ ..., \ n \ = \ 9\)

\(\color{red}{r \ = \ \frac{18}{9} \ = \ 2}\)
\(\color{red}{S_n \ = \ \frac{a(r^n \ - \ 1)}{r \ - \ 1} \ = \ \frac{9(2^9 \ - \ 1)}{2 \ - \ 1} \ = \ 9(512 \ - \ 1) \ = \ 4599}\)

3) Evaluate the geometric series described: \(\sum_{n \ = \ 1}^{n \ = \ 9} \ 7(-2)^{n \ - \ 1}\)

\(\color{red}{\sum_{n \ = \ 1}^{n \ = \ 9} \ 7(-2)^{n \ - \ 1} \ ⇒ \ r \ = \ -2, \ a \ = \ 7}\)
\(\color{red}{S_n \ = \ \frac{a(r^n \ - \ 1)}{r \ - \ 1} \ = \ \frac{7((-2)^9 \ - \ 1)}{-2 \ - \ 1} \ = \ \frac{7(-512 \ - \ 1)}{-3} \ = \ 1197}\)

4) Evaluate the geometric series described: \(\sum_{n \ = \ 1}^{n \ = \ 5} \ 5(3)^{n \ - \ 1}\)

\(\color{red}{\sum_{n \ = \ 1}^{n \ = \ 5} \ 5(3)^{n \ - \ 1} \ ⇒ \ r \ = \ 3, \ a \ = \ 5}\)
\(\color{red}{S_n \ = \ \frac{a(r^n \ - \ 1)}{r \ - \ 1} \ = \ \frac{5(3^5 \ - \ 1)}{3 \ - \ 1} \ = \ \frac{5(243 \ - \ 1)}{2} \ = \ 605}\)

5) Evaluate the geometric series described: \(\sum_{n \ = \ 1}^{n \ = \ 6} \ 3(-\frac{1}{2})^{n \ - \ 1}\)

\(\color{red}{\sum_{n \ = \ 1}^{n \ = \ 6} \ 3(-\frac{1}{2})^{n \ - \ 1} \ ⇒ \ r \ = \ -\frac{1}{2} \ , \ a \ = \ 3}\)
\(\color{red}{S_n \ = \ \frac{a(r^n \ - \ 1)}{r \ - \ 1} \ = \ \frac{3((-\frac{1}{2})^5 \ - \ 1)}{-\frac{1}{2} \ - \ 1} \ = \ \frac{3(-\frac{1}{32} \ - \ 1)}{-\frac{3}{2}} \ = \ \frac{66}{32} \ = \ \frac{33}{16}}\)

6) Evaluate the geometric series described: \(\sum_{n \ = \ 1}^{n \ = \ 4} \ 8(\frac{1}{3})^{n \ - \ 1}\)

\(\color{red}{\sum_{n \ = \ 1}^{n \ = \ 4} \ 8(\frac{1}{3})^{n \ - \ 1} \ ⇒ \ r \ = \ \frac{1}{3} \ , \ a \ = \ 8}\)
\(\color{red}{S_n \ = \ \frac{a(r^n \ - \ 1)}{r \ - \ 1} \ = \ \frac{8((\frac{1}{3})^4 \ - \ 1)}{\frac{1}{3} \ - \ 1} \ = \ \frac{8(\frac{1}{81} \ - \ 1)}{-\frac{2}{3}} \ = \ \frac{320}{27}}\)

7) Evaluate the geometric series described: \(1, \ 4, \ 16, \ 64, \ 256, \ ..., \ n \ = \ 6\)

\(\color{red}{r \ = \ \frac{4}{1} \ = \ 4}\)
\(\color{red}{S_n \ = \ \frac{a(r^n \ - \ 1)}{r \ - \ 1} \ = \ \frac{1((4)^6 \ - \ 1)}{4 \ - \ 1} \ = \ \frac{4096 \ - \ 1}{3} \ = \ 1365}\)

8) Evaluate the geometric series described: \(1024, \ 256, \ 64, \ 16, \ 4, \ ..., \ n \ = \ 6\)

\(\color{red}{r \ = \ \frac{256}{1024} \ = \ \frac{1}{4}}\)
\(\color{red}{S_n \ = \ \frac{a(r^n \ - \ 1)}{r \ - \ 1} \ = \ \frac{1024((\frac{1}{4} \ )^6 \ - \ 1)}{\frac{1}{4} \ - \ 1} \ = \ \frac{1024(\frac{1}{4096} \ - \ 1}{-\frac{3}{4}} \ = \ 1365}\)

9) Evaluate the geometric series described: \(7, \ 14, \ 28, \ 56, \ 112, \ ..., \ n \ = \ 4\)

\(\color{red}{r \ = \ \frac{14}{7} \ = \ 2}\)
\(\color{red}{S_n \ = \ \frac{a(r^n \ - \ 1)}{r \ - \ 1} \ = \ \frac{7((2)^4 \ - \ 1)}{2 \ - \ 1} \ = \ 7(16 \ - \ 1) \ = \ 105}\)

10) Evaluate the geometric series described: \(54, \ 18, \ 6, \ 2, \ \frac{2}{3}, \ ..., \ n \ = \ 4\)

\(\color{red}{r \ = \ \frac{18}{54} \ = \ \frac{1}{3}}\)
\(\color{red}{S_n \ = \ \frac{a(r^n \ - \ 1)}{r \ - \ 1} \ = \ \frac{54((\frac{1}{3})^4 \ - \ 1)}{\frac{1}{3} \ - \ 1} \ = \ 80}\)

Finite Geometric Series Practice Quiz