What is Geometric Sequence

What is Geometric Sequence

 Read,5 minutes

Geometric Sequences

Geometric sequences are those in which the following number is obtained by multiplying the previous term by a constant known as the common ratio. The letter r is used to show the common ratio.

We have an increasing geometric sequence if r is more than 1. We have a decreasing geometric sequence if r is between 0 and 1.

The Geometric Sequences Formula

We can use the geometric sequence formula to find any number in the sequence.

an=a r(n1), where:

  • a: The first term
  • an: The nth term
  • n: The term poistion
  • r: Common ratio

Finding the terms in a Geometric Sequence

If we divide any term by the previous term, we can find the common ratio: r = anan 1

Example

Consider the geometric sequence: 2, 6, 18, 54, 162, ..., Find a7 = ?

Solution

Before using the geometric sequence formula, we need to know the first term, the common ratio, and the position of the term we want to find:

  • The first term: a = 2
  • common ratio: r = 3
  • Term's position: n = 7

Now, we fill in the formula with these numbers:

an=a r(n1)  a7=2 3(6) = 2×729 = 1458

We can see that the number is very big. Depending on what the common ratio is, geometric sequences tend to grow quickly.

The formula for the Sum of a Geometric Sequence

With the sum of a finite geometric sequence formula, you can find the sum of a geometric sequence's first n terms. Consider a geometric series with n terms, where the first term is a, and the ratio r: a, ar, ar2, ar3, ... , arn  1

The sum is shown by Sn and given by the formula:

  • Sn = a(rn  1)r  1, when r  1
  • Sn = na, when r = 1

Example

Add up the first four terms in: 10, 30, 90, 270, 810, 2430, ...

Solution

  • The first term: a = 10
  • common ratio: r = 3
  • n = 4

So:

Sn = a(rn  1)r  1 = 10(3n  1)3  1 = 400

Free printable Worksheets

Exercises for Geometric Sequences

1) Find the explicit formula: 1, 2, 4, 8, 16, ...

2) Find the explicit formula: 2, 6, 18, 54, 162, ...

3) Find the explicit formula and a11: 88, 44, 22, 11, 5.5, ...

4) Find the explicit formula and a5: a = 5, r = 5

5) Find the explicit formula and the first 7 terms: a = 2, r = 13

6) Find the first 10 terms: a = 7, r = 12

7) Find a7: 45, , 9, 95 , 925 , ...

8) Find a10: a7 = 227 , r = 13

9) Find the explicit formula and the sum of the first five terms: a = 10, r = 2

10) Find the explicit formula and the sum of the first 10 terms: 96, 48, 24, 12, 6, ...

 

1) Find the explicit formula: 1, 2, 4, 8, 16, ...

a = 1, r = 21 = 2, an=a r(n1)
 an=1 (2)(n1)

2) Find the explicit formula: 2, 6, 18, 54, 162, ...

a = 2, r = 62 = 3, an=a r(n1)
 an=2 (3)(n1)

3) Find the explicit formula and a11: 88, 44, 22, 11, 5.5, ...

a = 88, r = 4488 = 12, an=a r(n1)
 an=88 (12 )(n1)  a11=88 (12 )(111) = 881024 = 11256

4) Find the explicit formula and a5: a = 5, r = 5

a = 5, r = 5, an=a r(n1)
 an=5 (5)(n1)  a5=5 (5)(51) = 5×1(5)4 = 1125

5) Find the explicit formula and the first 7 terms: a = 2, r = 13

a = 2, r = 13 , an=a r(n1)
 an=2 (13 )(n1)
2, 23 , 29 , 227 , 281 , 2243 , 2729 , ...

6) Find the first 10 terms: a = 7, r = 12

a = 7, r = 12 , an=a r(n1)
 an=7 (12 )(n1)
7, 72 , 74 , 78 , 716 , 732 , 764 , 7128 , 7256 , 7512 , ...

7) Find a7: 45, , 9, 95 , 925 , ...

a = 45, r = 15, an=a r(n1)
 an=45 (15 )(n1)  a7=45 (15 )(71) = 45×156 = 93125

8) Find a10: a7 = 227 , r = 13

a7 = 227 , r = 13 , an=a r(n1)
 a7 = a (13 )(71)  a = a7(13 )6 = 227136 = 54
 a10= 54 (13 )(101) = 2729

9) Find the explicit formula and the sum of the first five terms: a = 10, r = 2

a = 10, r = 2, an=a r(n1)
 an=10 2(n1)

Sn = a(rn  1)r  1  S5 = 10(35  1)3  1 = 5(243  1) = 1210

10) Find the explicit formula and the sum of the first 10 terms: 96, 48, 24, 12, 6, ...

a = 96, r = 12 , an=a r(n1)
 an=96 (12 )(n1)

Sn = a(rn  1)r  1

 S10 = 96((12 )10  1)2  1 = 961023

Geometric Sequences Practice Quiz