1) Find the explicit formula: \(-1, \ 2, \ -4, \ 8, \ -16, \ ...\)
\(\color{red}{a \ = \ -1, \ r \ = \ \frac{2}{-1} \ = \ -2, \ a_n = a \ r^{(n-1)}}\)
\(\color{red}{⇒ \ a_n = -1 \ (-2)^{(n-1)}}\)
2) Find the explicit formula: \(-2, \ -6, \ -18, \ -54, \ -162, \ ...\)
\(\color{red}{a \ = \ -2, \ r \ = \ \frac{-6}{-2} \ = \ 3, \ a_n = a \ r^{(n-1)}}\)
\(\color{red}{⇒ \ a_n = -2 \ (3)^{(n-1)}}\)
3) Find the explicit formula and \(a_{11}\): \(88, \ 44, \ 22, \ 11, \ 5.5, \ ...\)
\(\color{red}{a \ = \ 88, \ r \ = \ \frac{44}{88} \ = \ \frac{1}{2}, \ a_n = a \ r^{(n-1)}}\)
\(\color{red}{⇒ \ a_n = 88 \ (\frac{1}{2} \ )^{(n-1)} \ ⇒ \ a_{11} = 88 \ (\frac{1}{2} \ )^{(11-1)} \ = \ \frac{88}{1024} \ = \ \frac{11}{256}}\)
4) Find the explicit formula and \(a_5\): \(a \ = \ 5, \ r \ = \ -5\)
\(\color{red}{a \ = \ 5, \ r \ = \ -5, \ a_n = a \ r^{(n-1)}}\)
\(\color{red}{⇒ \ a_n = 5 \ (-5)^{(n-1)} \ ⇒ \ a_5 = 5 \ (-5)^{(5-1)} \ = \ 5 \times \frac{1}{(-5)^4} \ = \ \frac{1}{125}}\)
5) Find the explicit formula and the first \(7\) terms: \(a \ = \ 2, \ r \ = \ \frac{1}{3}\)
\(\color{red}{a \ = \ 2, \ r \ = \ \frac{1}{3} \ , \ a_n = a \ r^{(n-1)}}\)
\(\color{red}{⇒ \ a_n = 2 \ (\frac{1}{3} \ )^{(n-1)}}\)
\(\color{red}{⇒ 2, \ \frac{2}{3} \ , \ \frac{2}{9} \ , \ \frac{2}{27} \ , \ \frac{2}{81} \ , \ \frac{2}{243} \ , \ \frac{2}{729} \ , \ ...}\)
6) Find the first \(10\) terms: \(a \ = \ 7, \ r \ = \ -\frac{1}{2}\)
\(\color{red}{a \ = \ 7, \ r \ = \ -\frac{1}{2} \ , \ a_n = a \ r^{(n-1)}}\)
\(\color{red}{⇒ \ a_n = 7 \ (-\frac{1}{2} \ )^{(n-1)}}\)
\(\color{red}{⇒ 7, \ -\frac{7}{2} \ , \ \frac{7}{4} \ , \ -\frac{7}{8} \ , \ \frac{7}{16} \ , \ -\frac{7}{32} \ , \ \frac{7}{64} \ , \ -\frac{7}{128} \ , \ \frac{7}{256} \ , \ -\frac{7}{512} \ , \ ...}\)
7) Find \(a_{7}\): \(45, \ , \ 9, \ \frac{9}{5} \ , \ \frac{9}{25} \ , \ ...\)
\(\color{red}{a \ = \ 45, \ r \ = \ \frac{1}{5}, \ a_n = a \ r^{(n-1)}}\)
\(\color{red}{⇒ \ a_n = 45 \ (\frac{1}{5} \ )^{(n-1)} \ ⇒ \ a_7 = 45 \ (\frac{1}{5} \ )^{(7-1)} \ = \ 45 \times \frac{1}{5^6} \ = \ \frac{9}{3125}}\)
8) Find \(a_{10}\): \(a_7 \ = \ \frac{2}{27} \ , \ r \ = \ -\frac{1}{3}\)
\(\color{red}{a_7 \ = \ \frac{2}{27} \ , \ r \ = \ -\frac{1}{3} \ , \ a_n = a \ r^{(n-1)}}\)
\(\color{red}{⇒ \ a_7 \ = \ a \ (-\frac{1}{3} \ )^{(7-1)} \ ⇒ \ a \ = \ \frac{a_7}{(-\frac{1}{3} \ )^6} \ = \ \frac{\frac{2}{27}}{\frac{1}{3^6}} \ = \ 54}\)
\(\color{red}{⇒ \ a_{10} = \ 54 \ (-\frac{1}{3} \ )^{(10-1)} \ = \ -\frac{2}{729}}\)
9) Find the explicit formula and the sum of the first five terms: \(a \ = \ 10, \ r \ = \ 2\)
\(\color{red}{a \ = \ 10, \ r \ = \ 2, \ a_n = a \ r^{(n-1)}}\)
\(\color{red}{⇒ \ a_n = 10 \ 2^{(n-1)}}\)
\(\color{red}{S_n \ = \ \frac{a(r^n \ - \ 1)}{r \ - \ 1} \ ⇒ \ S_5 \ = \ \frac{10(3^5 \ - \ 1)}{3 \ - \ 1} \ = \ 5(243 \ - \ 1) \ = \ 1210}\)
10) Find the explicit formula and the sum of the first \(10\) terms: \(96, \ 48, \ 24, \ 12, \ 6, \ ...\)
\(\color{red}{a \ = \ 96, \ r \ = \ \frac{1}{2} \ , \ a_n = a \ r^{(n-1)}}\)
\(\color{red}{⇒ \ a_n = 96 \ (\frac{1}{2} \ )^{(n-1)}}\)
\(\color{red}{S_n \ = \ \frac{a(r^n \ - \ 1)}{r \ - \ 1}}\)
\(\color{red}{⇒ \ S_{10} \ = \ \frac{96((\frac{1}{2} \ )^{10} \ - \ 1)}{2 \ - \ 1} \ = \ \frac{96}{1023}}\)