Free Full Length ACCUPLACER Mathematics Practice Test

Full Length ACCUPLACER Mathematics Practice Test

If you want to prepare for the ACCUPLACER Mathematics Practice Test? It’s time to take a Full-length ACCUPLACER Mathematics Practice Test. It is the best way to simulate test day. To challenge your skills and simulate the full length ACCUPLACER Mathematics Practice Test day experience, score your tests using the answer keys.

The Most Comprehensive Accuplacer Math Preparation Bundle
$76.99 $33.99
56% Off*

Bundle Includes Accuplacer Math Prep Books, Workbooks, and Practice Tests

 

ACCUPLACER Mathematics Practice Test 3

 

(Non–Calculator)   2 Sections – 40 questions Total time for two sections: No Time Limit  You may not use a calculator on this section.

Arithmetic and Elementary Algebra
1- Which of the following is a factor of both x2  9 x + 18 and x^2 \ – \ 7 \ x  \ +\ 6 ?
(A) (x \ + \ 6)
(B) (x \ + \ 3)
(C) (x \ -  \ 6)
(D) (x \ -  \ 1)
2- What is the area of an isosceles right triangle that has one leg that measures 6 cm?
(A) 18 cm^2
(B) 36 cm^2
(C) 9 cm^2
(D) 20 cm^2
3- If two angles in a triangle measure  46   degrees and 72 degrees, what is the value of the third angle?
(A) 64 degrees
(B) 56 degrees
(C) 46 degrees
(D) 62 degrees
4- Which of the following expressions is equivalent to  15 \ – \ \frac{4}{3} \  x \  \leq \ 1
(A)  x \leq \ – \ 10.5
(B)  x \geq \ 10.5
(C)  x \geq \ 12
(D)  x \leq \ 12
5- \frac{1}{2\ b^2} \ + \ \frac{1}{ b} \ = \ \frac{1}{b^2}  , then  b =   ?
(A) \frac{1}{2}
(B) - \ \frac{1}{2}
(C) - \ \frac{3}{2}
(D) \frac{3}{2}
6- 7^{\frac{6}{5}} \ × \  7^{\frac{4}{5}} =
(A) 7^5
(B) 7^3
(C) 7^4
(D) 7^2
7- If a^7 \ + \ c^7 \ = \ c^7 \ + \ b^7 , then   a \ = ?
(A) c
(B) b
(C) b^{4} \ – \ a^{4}
(D) b^{3} \ – \ a^{4}
8- What is  178.4786 rounded to the nearest hundredth?
(A) 178.47
(B) 178.50
(C) 178.46
(D) 178.48
9- The equation of a line is given as: y \ = \ 6 \ x \ – \ 1  . Which of the following points does not lie on the line?
(A) (1,2)
(B) (- \ 2 ,- \ 13 )
(C) (3 , 17 )
(D) (1, 5 )
10- A soccer team played   210 games and won 60  percent of them. How many games did the team win?
(A) 125
(B) 124
(C) 123
(D) 126
11- The sum of three numbers is  64 . If another number is added to these three numbers, the average of the four numbers is 28 .
What is the fourth number?
(A) 58
(B) 48
(C) 38
(D) 28
12- Line m passes through the point   (2, 3) . Which of the following CANNOT be the equation of line m?
(A) y = 1 \ - \ x
(B) y =  3
(C) x  = 2
(D) y  =  x \ + \ 1
13- If a = 9   what’s the value of 3 \ a^{2} \ + \ 7 \ a  \ - \ 8 ?
(A) 296
(B) 298
(C) 300
(D) 295
14- David owed $7216  . After making 32 payments of $115 each , how much did he have left to pay?
(A) $3,526
(B) $3,525
(C) $3,515
(D) $3,536
15- (q^{3}) \ . \ (q^{3})  \ = ?
(A) q^3
(B) q^9
(C) q^6
(D) q^5
 
Accuplacer Math for Beginners
$24.99 $13.99
44% Off*

The Ultimate Step by Step Guide to Preparing for the Accuplacer Math Test

16- x^{2} \  – \ 64 \ = \ 0 , x could equal to:
(A) 8
(B) 9
(C) 6
(D) 5
17- (x \ + \ 2) \ (x \ - \ 6) \ =
(A) x^{2} \ -  \ 4 \ x \ + \ 12
(B) x^{2} \ +  \ 4 \ x \ + \ 12
(C) x^{2} \ -   \ 4 \ x \ -  \ 12
(D) x^{2} \ +   \ 4 \ x \ -  \ 12
18- If x is a positive integer divisible by 9, and   x \ < \ 81 , what is the greatest possible value of x ?
(A) 54
(B) 72
(C) 36
(D) 45
19- If  7.5 \ < \ x  \ ≤ \ 11.0 , then  x cannot be equal to:
(A) 7.5
(B) 11.0
(C) 9.2
(D) 10.1
20- If a =  6 , what is the value of b in this equation?
b  = \ \frac{a^{2}}{3} \ + \ 4
(A) 14
(B) 8
(C) 16
(D) 13
College–Level Mathematics
21- Suppose a triangle has the dimensions indicated below:
Then Sin B = ?
ACCUPLACER Mathematics
(A) \frac{3}{4}
(B) \frac{7}{3}
(C) \frac{3}{6}
(D) \frac{3}{7}
22- A number is chosen at random from 1 to 50 . Find the probability of not selecting a composite number.
(A) \frac{8}{25}
(B) \frac{6}{25}
(C) \frac{5}{25}
(D) \frac{4}{25}
23- The cost, in thousands of dollars, of producing x thousands of textbooks is C (x) \ = \ x^{2} \ + \ 10 \ x \ + \ 30 . The revenue, also in thousands of dollars, is R (x) = 3 \ x . Find the profit or loss if 2,000 textbooks are produced. (profit = revenue cost)
(A) $22,000 profit
(B) $22,000 loss
(C) $28,000 loss
(D) $28,000 profit
24- Find the slope – intercept form of the graph 5 \ x \ – \ 9  \ y  \ = \ – \ 16
(A) \ y  =  \frac{5}{9} \ x \ + \ \frac{16}{9}
(B) - \ 9 \ y  =  - \ 5 \ x \ - \ 16
(C) y  =  - \ 5 \ x \ - \ 16
(D) y  =  5 \ x \ - \ 16
25- Solve e^{(x \ + \ 4  )}  = 32
(A) ln \ (32) \ +  \ 4
(B) ln \ (32) \ +  \ 2
(C) ln \ (32) \ -  \ 4
(D) ln \ (32) \ -  \ 2
26- If  tan \theta \ = \ \frac{8}{15}   and  sin \theta \  > \ 0 , then cos \theta \ = ?
(A) \frac{17}{15} 
(B) \frac{15}{17} 
(C) \frac{8}{17} 
(D) \frac{17}{8} 
27- Michael (M ) is 3 years older than her friend Alex  (A) who is 5 years younger than her sister John (J ). If M , A and J denote their ages, which one of the following represents the given information?
(A) \begin{cases}M  \ = \ A \ + \ 3\\ J \ = \  A \ - \ 5\end{cases}
(B) \begin{cases}M  =  A  \ - \  3 \\ A  =  J \ - \ 5\end{cases}
(C) \begin{cases}M  =  3  \ + \  A \\ A  =   5 \ - \ J\end{cases}
(D) \begin{cases}M  =  3  \ + \  A \\ A  =  J \ - \ 5\end{cases}
28- Solve the equation: log_2⁡ \ (x \ + \ 6) \  –  \ log_2⁡(x \ - \ 2) \ = \ 1
(A) -  \ 2
(B) -  \ 10
(C) 2
(D) 10
29- From 9 students in an algebra class, a group of   3 students will be chosen to work on a group project. How many different groups of  4 students can be chosen?
(A) 72
(B) 21
(C) 36
(D) 48
30- What is the domain of the following function?
 f (x) \ = \ \sqrt{(x \ - \ 6 )} \ + \ 4
(A) x \ ≥ - \ 6
(B) x \leq   - \ 6
(C) x \leq  6
(D) x \ \geq  6
31- Which of the following point is the solution of the system of equations?
\begin{cases}12\ x \ + \ 4 \ y \ = \ 32 \\6 \ x \ - \ 2 \  y  =  8\end{cases}
(A) (- \ 2, 2)
(B) ( 2, 2)
(C) ( 2, - \ 2)
(D) (- \  2, - \ 2)
32- if  f  (x) \ = \ \frac{(4  \ x \ - \ 1 )}{2 } and  f ^{ \ – \ 1}(x)  , is the inverse of  f  (x) , what is the value of  f ^{ \ – \ 1}(3) ?
(A) \frac{5}{4}
(B) \frac{3}{4}
(C) \frac{7}{4}
(D) \frac{9}{4}
33- If  f (x) \ = \ 7 \ - \ x  and g (x) \ = \ – \ x^2 \ – \ 3 \ – \ 5 \ x , then find (g \ + \ f)  (x)?
(A) – \ x^2 \ – \ 6  \ x \ + \ 4
(B) – \ x^2 \ – \ 6  \ x \ -  \ 4
(C) – \ x^2 \ + \ 6  \ x \ -  \ 4
(D) – \ x^2 \ + \ 6  \ x \ + \ 4
34- Find the Center and Radius of the graph  (x \ - \ 4)^{2}  \ + \  (y  \ + \ 7)^{2} \ = \ 18  ?
(A) ( 4 , 7 ), 3 \ \sqrt{2}
(B) ( 4 , 7 ), 2 \ \sqrt{3}
(C) (- \ 4 , 7 ), 3 \ \sqrt{2}
(D) (4 ,- \  7 ), 3 \ \sqrt{2}
35- Which of the following lines is parallel to the graph of y \ = \  4 \ x ?
(A) 4 \ x \ + \ y \ = \ 4
(B) 4 \ x \ - \ y \ = \ 4
(C) 2 \ x \ - \ y \ = \ 4
(D) 2 \ x \ - \ y \ = \ 2
36- \frac{| \ 6 \ + \ x \ |}{8} \ ≤ \ 3 , then x =?
(A) - \ 30 \ ≤ \ x \ ≤ \ - \ 18
(B) 30 \ ≤ \ x \ ≤ \ 18
(C) - \ 30 \ ≤ \ x \ ≤ \ 18
(D) - \ 18 \ ≤ \ x \ ≤ \ 18
37- Simplify  \frac{(4 \ + \  i)}{2\ - \  3 \ i}
(A) \frac{5}{13} \ -  \  i \ \frac{14}{13}
(B) \frac{5}{13} \  +\  i \ \frac{14}{13}
(C) - \ \frac{5}{13} \  +\  i \ \frac{14}{13}
(D) - \ \frac{5}{13} \  - \  i \ \frac{14}{13}
38- tan ( \frac{π}{3}) \ =
(A) - \ \sqrt3
(B) - \ 3 \  \sqrt3
(C) 3 \  \sqrt3
(D) \sqrt3
39- \frac{\sqrt{48 \ a^7 \ b^2}}{\sqrt{4 \ a^2 \ b^2}} =?
(A)  2 \ a\ \sqrt{3}
(B) 2 \ a^2\ \sqrt{3 \ a}
(C) 2 \ a^2\ \sqrt{3 \ b}
(D) 2 \ a\ \sqrt{3 \ b}
40- Find the inverse function of   f (x) \ = \ \frac{(x \ - \ 4 )}{8}
(A) 4 \ (2 \ x \ - \ 1)
(B) 4 \ (2 \ x \ + \ 1)
(C) (2 \ x \ + \ 1)
(D) (2 \ x \ - \ 1)

1- Choice C is correct

The correct answer is (x \ – \ 6)
Factor each trinomial
x^2 \ - \ 9 \ x \ + \ 18 \ and x^2 \ – \ 7 \ x \ + \ 6
x^2 \ - \ 9 \ x \ + \ 18 \Rightarrow (x \ – \ 6) \ (x \ - \ 3)
x^2 \ – \ 7 \ x \ + \ 6 \Rightarrow (x \ – \ 1) \ (x \ – \ 6)

2- Choice A is correct

The correct answer is 18 cm^2
a=6  \Rightarrow area of triangle is =  \frac{1}{2} \ (  6\times \ 6)  =  \frac{36}{2} \ = 18 cm^2

3- Choice D is correct

The correct answer is 62 degrees
46^{\circ} \ + \ 72^{\circ }  =  118^{\circ}
180^{\circ } \ – \ 118^{\circ}  =  62^{\circ}
The value of the third angle is 62^\circ .

4- Choice B is correct

The correct answer is x \geq \ 10.5
Simplify:
15 \ –  \ \frac{4}{3} \ x \  \leq \  1 \  \Rightarrow \ –  \ \frac{4}{3} \ x \  \leq \  – \ 14 \  \Rightarrow \ –  \ x \ \leq\  – \ 10.5 \  \Rightarrow x \geq \ 10.5

5- Choice A is correct

The correct answer is \frac{1}{2}
\frac{1 \ + \ 2\ b}{2 \ b^2} \ = \ \frac{1}{b^2} \Rightarrow (b\neq 0)
\ b^2 \ + \ 2 \  b^3 \ = \ 2 \ b^2 \ \Rightarrow
2 \ b^3 \ - \  \ b^2 \ = \ 0 \ \Rightarrow
\ b^2 \ (2 \ b  \ -  \ 1) \ = \ 0 \ \Rightarrow
2 \ b \ -  \ 1  \ = \ 0 \ \Rightarrow \ b \ = \frac{1}{2}

6- Choice D is correct

The correct answer is 5^2
7^{\frac{6}{5} } \ × \ 7^{\frac{4}{5} }  =  7^ { \frac{6}{5} \ + \ \frac{4}{5}  }  = 7^\frac{10}{5}  =  7^2 

7- Choice B is correct

 The correct answer is b
If a^7 \ + \ c^7 \ = \ c^7 \ + \ b^7
then:  a^7 \ = \ b^7 \ ⇒ \ a \ = \ b

8- Choice D is correct

The correct answer is 178.48
Underline the hundredths place:
 178.4\underline{\\7}86
Look to the right if it is 7 or above, give it a shove.
Then, round up to 178.48

9- Choice A is correct

The correct answer is (1, 2)
y \ = \ 6 \ x \ – \ 1
A. (1, 2) \Rightarrow 2 \ = \ 6 \ – \ 1 \Rightarrow 2 \ ≠ \ 5
B. (– \ 2, \ –\ 13) \Rightarrow \ – \ 13 \ = \ – \ 12 \ – \ 1 \Rightarrow \ – \ 13 \ = \ – \ 13 
C. (3, 17) \Rightarrow \ 17 \ = \ 18 \ – \ 1 \Rightarrow 17 = 17
D. (1, 5) \Rightarrow 5 \ = \ 6 \ – \ 1 \Rightarrow \ 5 \ = \ 5

10- Choice D is correct

The correct answer is 126
210 \ × \  \frac{60}{100} \ = \  126 

11- Choice B is correct

The correct answer is 35
a \ + \ b \ +\ c  =  64
\frac{a \ +\ b \ +\ c \ +\ d}{4} \ =\ 28 \ ⇒\ a \ + \ b \ + \ c \ + \ d \ = \ 112  \ ⇒ \ 64 \ + \ d \ = \ 112
d \ = \ 112 \ – \ 64 \ = \ 48

12- Choice A is correct

The correct answer is y = 1 \ - \ x
Solve for each equation:
(2, 3)
A. y \ = \ 1 \ – \ x \ ⇒ \ 3 \ = \ 1 \ – \  3 \ ⇒ \ 3 ≠ - \ 2
B. y \ = 3 \ ⇒ 3 =  3
C. x  = 2 \ ⇒  2  = 2
D. y  =  x \ + \ 1  ⇒  3 =  2 \ + \ 1 \ ⇒ \ 3 \ = \ 3

13- Choice B is correct

The correct answer is 298
If a \ = \ 9  
then : 3 \ a^2 \ + \ 7 \ a \ - \ 8  ⇒  3 \ (9)^2 \ + \ 7 \ (9) \ -  \ 8  ⇒  3 \ (81) \ + \ 63  \ - \ 8   =  298

14- Choice D is correct

The correct answer is $3,536
32 \ × \ $115 \ = \ $ 3680
Payable amount is:
$7216 \ - \ $3680 \ = \ $3536

15- Choice C is correct

The correct answer is q^{6}
(q^3) \ . \ q^3) \ = \ q ^{3 \ + \ 3} \ = \ q^{6}

16- Choice A is correct

The correct answer is 8
x^2 \ – \ 64 \ = \ 0 \ ⇒ \ x^2 \ = \ 64 \ ⇒ \ x \ = \ 8

17- Choice C is correct

The correct answer is x^{2} \ -  \ 4 \ x \ - \ 12
Use FOIL (First, Out, In, Last)
(x \ + \ 2) \ (x \ - \ 6) \ = \ x^2 \ - \ 6 \ x \ + \ 2 \ x \ - \ 12  = x ^2 \ -  \ 4 \ x \ -  \ 12

18- Choice B is correct

The correct answer is 72
\frac{54}{9} \ = \ \frac{18}{3}  = 6 , \frac{72}{9} \ = \ \frac{24}{3}  =  8 , \frac{36}{9} \ = \ \frac{18}{3} =4 , \frac{45}{9} \ = \ \frac{15}{3}= 5   
 72 is prime number

19- Choice A is correct

The correct answer is 7.5
If 7.5 \ < \ x \ ≤ \ 11.0 , then x cannot be equal to 7.5

20- Choice C is correct

The correct answer is 16
If a  = \  8 , then:
b = \ \frac{6^2}{3} \ + \ 4 \ ⇒
b  = \ \frac{36}{3} \ + \ 4 \ ⇒  
b  = \ 12 \ + \ 4 \ = \ 16

21- Choice D is correct

The correct answer is \frac{3}{7}
sin B = \ \frac{(the \ length \ of \ the \ side \ that \ is \ opposite \ that \ angle)}{(the \ length \ of \ the \ longest \ side \ of \ the \ triangle)} \ = \ \frac{3}{7}

22- Choice A is correct

The correct answer is \frac{8}{25}
Set of number that are not composite between 1 and 50  : A = \ {1, 2, 3, 5, 7, 11, 13, 17, 19, 23 , 29, 31, 37 , 41,43,47}
n (A) = \ 16 \ ⇒  p  = \ \frac{16}{50} \ = \ \frac{8}{25}

23- Choice B is correct

The correct answer is $22,000 loss
c  (2) \ = \ (2)^2 \ + \ 6\ (2) \ + \ 12 \ = \ 4 \ + \ 12 \ + \ 12  =  28
3 \ × \ 2 =  6  ⇒  6 \ - \ 28   = \ - \ 22 \ ⇒ \ $22,000 loss

24- Choice A is correct

The correct answer is\ y  =  \frac{5}{9} \ x \ + \ \frac{16}{9}
- \ 9 \ y  =  - \ 5 \ x \ - \ 16 \ ⇒
\ y  =  \frac{- \ 5}{- \ 9} \ x \  - \ \frac{16}{- \ 9} \ ⇒
\ y  =  \frac{5}{9} \ x \ + \ \frac{16}{9}

25- Choice C is correct

The correct answer is ln \ (32) \ -  \ 4
e^{x \ + \ 4}  = 32  ⇒   ln \ (e^{x \ + \ 4}) = \ ln \ (32)
(x \ + \ 4) \ ln \ (e) =   ln \ (32)
x \ + \ 4  =  ln \ (32) \ ⇒ \ x \ = \ ln \ (32) \ -  \ 4

26- Choice B is correct

The correct answer is \frac{15}{17} 
tan \theta \ = \ \frac{8}{15} \ ⇒ we have following triangle, then
c \ = \ \sqrt{8^2 \ + \ 15^2} \ = \ \sqrt{64 \ + \ 225} \ = \ \sqrt{289} \ = \ 17
cos \theta \ = \ \frac{15}{17}

27- Choice D is correct

The correct answer is:
M = \  3  \ +
A =   J    – \ 5

28- Choice D is correct

The correct answer is 2
METHOD ONE:
\log_{2}{(x \ + \ 6)} \ – \ \log_{2}{(x \ - \ 2)} = 1
Add \log_{2}{(x \ - \ 2)} to both sides:
\log_{2}{(x \ + \ 6)} \ – \ \log_{2}{(x \ - \ 2)} + \log_{2}{(x \ - \ 2)} = 1 + \log_{2}{(x \ - \ 2)}
And simplify:
\log_{2}{(x \ + \ 6)} = 1 + \log_{2}{(x \ - \ 2)}
Logarithm rule: a \ = \ \log_{b}{b^a} \ ⇒ \ 1 \ = \log_{2}{2^1} \ = \ \log_{2}{2}
then: \log_{2}{(x \ + \ 6)} = \log_{2}{2} \ + \ \log_{2}{(x \ - \ 2)}
Logarithm rule: \log_{c}{a} +\log_{c}{b} = \log_{c}{a\ b}
then: \log_{2}{2} \ + \ \log_{2}{(x \ - \ 2)} \ = \ \log_{2}{2 \ (x \ - \ 2)}⇒ \log_{2}{(x \ + \ 6)} \ = \ \log_{2}{2 \ (x \ - \ 2)}
When the logs have the same base: \log_{b}{(f(x))} \ = \ \log_{b}{(g(x))} \ ⇒ \ f (x) \ = \ g (x)
x \ + \ 6 \ = \ 2 \ (x \ - \ 2) \ ⇒ \ x \ + \ 6 \ = \ 2 \ x \ – \ 4 \ ⇒ \ - \ x \ = \ - \ 10 \ ⇒ \ x \ = \ 10
METHOD TWO
We know that: \log_{a}{b} \ - \ \log_{a}{c} \ = \ \log_{a}{\frac{b}{c}} and \log_{a}{b} \ = \ c \ ⇒ \ b \ = \ a^c
Then: \log_{2}{(x \ + \ 6)} \ - \ \log_{2}{(x \ - \ 2)}=\log_{2}{\frac{x \ + \ 6}{x \ - \ 2}} \ = \ 1⇒
\frac{x \ + \ 6 }{x \ - \ 2}  =  2^1  =  2  ⇒  x  \ + \ 6 \ = \ 2 \ (x \ - \ 2)
⇒ \ x \ + \ 6   =  2 \ x \ - \ 4  ⇒ 2 \ x \ - \ x \ = \ 6 \ + \ 4 \ ⇒ \ x \ = \ 10

 

29- Choice B is correct

The correct answer is 21
C_4^9 \ = \ \frac{9!}{4!(9 \ - \ 3)!} \ = \ \frac {9!}{4! \ 6!} \ = \ \frac{9 \ × \ 8 \ × \ 7 \ × \ 6!}{4! \ × \ 6!} \ = \ \frac{9\ ×\ 8 \ × \ 7 }{4 \ × \ 3 \ × \ 2 \ × \ 1} \ = \ 21 

30- Choice D is correct

The correct answer is x \ ≥ \ 6
The number under the square root symbol must be zero or greater than zero therefore: 
x \ - \ 6 \ ≥ \ 0 \ ⇒ \ x \ ≥ \ 6 domain of function = \ [6 , \ + \ ∞)

31- Choice B is correct

The correct answer is (2, 2)
\begin{cases}12 \ x \ + \ 4 \ y = 32 \\6 \ x \ - \ 2 \ y = 8 \end{cases}\Rightarrow Multiplication (– \ 2) in first equation \begin{cases}12 \ x \ + \ 4 \ y = 32 \\- \ 12 \ x \ + \ 4 \ y = - \ 16\end{cases}
Add two equations together \ ⇒8 \ y = 16 \ ⇒ \ y =2 then: x = 2

32- Choice C is correct

The correct answer is \frac{7}{4}
f  (x)=\frac{4 \ x \ - \ 1}{2} ⇒
y=\frac{4  \ x \ - \ 1}{2} \ ⇒
2 \ y \ = \ 4 \ x \ – \ 1 \ ⇒
2 \ y \ + \ 1 \ = \ 4\ x \ ⇒
\frac{2 \ y \ + \ 1}{4} \ = \ x
f^{ \ - \ 1} = \frac{2 \ y \ + \ 1}{4} \ ⇒
f^{ \ - \ 1} (3) \ = \ \frac{7}{4} 

33- Choice A is correct

The correct answer is – \ x^2 \ – \ 6  \ x \ + \ 4
(g \ + \ f) (x) \ = \  g  (x) \ + \  f (x) \ = \ (– \ x^2 \  – \ 3 \ – \ 5  \ x) \ +  \ (7 \ -  \ x)
– \ x^2 \ +  \ 4 \ – \ 5 \ x \  – \ x \ = \ – \ x^2 \ – \ 6\ x \ + \ 4

34- Choice D is correct

The correct answer is (4 , - \ 7 ), 3 \ \sqrt{2}
(x \ – \ h)^2 \ + \ (y \ – \ k)^2 \ = \ r^2 \ ⇒ 
center: (h,k) and radius: r
(x \ – \  4)^2 \ + \ (y \ + \ 7 )^2 \ = \ 18 \ ⇒
center: (4 , - \ 7) and radius: 3 \ \sqrt{2}

35- Choice A is correct

The correct answer is 4 \ x \ + \ y \ = \ 4
If two lines are parallel with each other, then the slope of the two lines is the same.
Then in line y \ = \ 4 \ x , the slope is equal to 4
And in the line 4 \ x \ + \ y \ = \ 4 \ ⇒ y \ = \ 4 \ x \ - \ 4
the slope equal to 4

36- Choice C is correct

The correct answer is - \ 30 \ ≤ \ x \ ≤ \ 18
\frac{| \ 6 \ + \ x \ |}{8} \ ≤ \ 3 \ ⇒ \ | \ 6 \ + \ x \ | \ ≤ \ 24 \ ⇒
- \ 24 \ ≤ \ 6 \ + \ x \ ≤ \ 24 \ ⇒
 - \ 24\ - \ 6 \ ≤ \ x \ ≤ \ 24 \ - \ 6 \ ⇒
- \ 30 \ ≤ \ x \ ≤ \ 18

37- Choice B is correct

The correct answer is  \frac{5}{13} \ + \  i \ \frac{14}{13}
If z_1 \ = \ x_1 \ + \ i \ y_1 and z_2 \ = \ x_2 \ + \ i \ y_2 \ ⇒
\frac{z _ 1}{z _  2} \ = \ \frac{x_1 \ x_2 \ + \ y_1 \ y_2}{x_2^2 \ + \ y_2^2} \ + \ i  \ \frac{x_2 \ y_1 \ - \ x_1 \ y_2}{x_2^2 \ + \ y_2^2}
In this problem: x_1 \ = \ 4, \  x_2 \ = 2, \  y_1 \ = \ 1, \ y_2 \ =  - \ 3
\frac{4 \ +\ i}{ 2 \ - \ 3  \ i} \ = \ \frac{5}{13} \ + \  i \ \frac{14}{13} 

38- Choice D is correct

The correct answer is \sqrt{3}
tan ( \frac{π}{3}) \ = \sqrt{3}

39- Choice B is correct

The correct answer is 2 \ a^2 \ \sqrt{3 \ a}
\frac{\sqrt{48 \ a^7 \ b^2}}{\sqrt{2 \ a^2 \ b^2}} = \frac{4 \ a^2 \ b \sqrt{3}}{2 \ a \ b  } \ = \ 2 \ a^2 \ \sqrt{3 \ a}

40- Choice B is correct

The correct answer is 4 \ (2 \ x \ + \ 1)
f(x)=\frac{x \ - \ 4}{8} \ ⇒ \ y \ = \ \frac{x \ - \ 4}{8} \ ⇒ \ 8 \ y \ = \ x \ – \ 4 \ ⇒ \ 8\ y \ + \  4 \ = \ x
f ^{ \ - \ 1} \ = \ 8 \ x \ + \ 4 \ = \ 4 \ ( 2 \ x \ + \ 1)

The Most Comprehensive Accuplacer Math Preparation Bundle
$76.99 $33.99
56% Off*

Bundle Includes Accuplacer Math Prep Books, Workbooks, and Practice Tests

More Free ACCUPLACER Mathematics Practice Test

Practice Test 1

Simulate test day with an official practice test. Then, score your test. The answers come with explanations so you can learn from your mistakes.

Start Practice Test

Practice Test 2

Simulate test day with an official practice test. Then, score your test. The answers come with explanations so you can learn from your mistakes.

Start Practice Test
 
 

You May Also Like to Read

More Articles