Full Length ACCUPLACER Mathematics Practice Test

Full-Length ACCUPLACER Mathematics Practice Test

If you want to prepare for the ACCUPLACER Mathematics Practice Test? It’s time to take a Full-length ACCUPLACER Mathematics Practice Test. It is the best way to simulate test day. To challenge your skills and simulate the full-length ACCUPLACER Mathematics Practice Test day experience, score your tests using the answer keys.

The Most Comprehensive Accuplacer Math Preparation Bundle
$76.99 $33.99
56% Off*

Bundle Includes Accuplacer Math Prep Books, Workbooks, and Practice Tests



ACCUPLACER Mathematics Practice Test 4

(Non–Calculator) 2 Sections – 40 questions 
Total time for two sections: No Time Limit You may not use a calculator on this section.

Arithmetic and Elementary Algebra
1- Last Friday Jacob had $45.12 . Over the weekend he received some money for cleaning the attic. He now has $62 . How much money did he receive?
(A) $16.68
(B) $16.78
(C) $16.88
(D) $16.98
2- x2  8 x + 15 = ?
(A) (x \ – \  3) \ (x \ - \ 5)
(B) (x \ + \  3) \ (x \ - \ 5)
(C) (x \ + \  3) \ (x \ + \ 5)
(D) (x \ - \  3) \ (x \ + \ 5)
3- What is 6254.74164 rounded to the nearest tenth?
(A) 6254.7
(B) 6254.8
(C) 6254.9
(D) 6254.0
4- In the following diagram, what is the value of x in the following triangle?
ACCUPLACER Mathematics
(A) 40^\circ
(B) 46^\circ
(C) 60^\circ
(D) 45^\circ
5- 45 is what percent of 120 ?
(A) 37\%
(B) 37.5\%
(C) 38.5\%
(D) 38\%
6- Which of the following equations has a graph that is a straight line?
(A) 3 \ y  \ +   \ 6  =  4 \ x
(B)   y \ = \ 3 \ x^2 \ + \  9
(C) 3 \ y^2  \ +   \ 6  =  x
(D) 3 \ y  \ +   \ 6  =  x^2
7- Find all values for which 2 \ x^2 \ - \ 5 \ x \ - \ 3 \ = \ 0
(A) - \ 12 , \frac{1}{2}
(B) \frac{1}{2} , 12
(C) - \ \frac{1}{2} , 3
(D) - \ \frac{3}{2} , 12
8- What is the distance between the points (2,  4) and (- \ 4,  - \ 4) ?
(A) 100
(B) 10
(C) 5
(D) 7
9- Simplify  \frac{\frac{4}{3} \ - \ \frac{2 \ x \ - \ 3}{9}}{\frac{x^2}{3} \ - \ \frac{7}{3}}
(A) \frac{- \ 2 \ x \ - \ 15}{3 \ x^2 \ - \ 21}
(B) \frac{- \ 2 \ x \ - \ 15}{3 \ x^2 \ +\ 21}
(C) \frac{- \ 2 \ x \ + \ 15}{3 \ x^2 \ + \ 21}
(D) \frac{- \ 2 \ x \ + \ 15}{3 \ x^2 \ - \ 21}
10- A man owed $  3254  on his car. After making 42 payment of $ 65 each, how much did he have left to pay?
(A) $  234
(B) $  236
(C) $  524
(D) $  253
11- Write the  \frac{7}{120} as a decimal.
(A) 0.059
(B) 0.058
(C) 0.60
(D) 0.62
12- \sqrt{75} is between which two whole numbers?
(A) 7 and 8
(B) 8 and 9
(C) 6 and 7
(D) 5 and 6
13- Which of the following is one solution of this equation?
3 \ x^2 \ + \ 10 \ x \ - \ 2 \ = \ 0
(A) \frac{- \ 5 \ ± \ \sqrt{31}}{3}  
(B) \frac{- \ 5 \ -  \ \sqrt{31}}{3} , 0.12 
(C) \frac{- \ 5 \ +  \ \sqrt{31}}{3} , 0.358 
(D) \frac{- \ 5 \ +  \ \sqrt{31}}{3} , 0.438 
14-  (x \ + \ 7  ) \ (x^{2} \ -  \ 4 \ x \ + \ 3) = ?
(A)  x^3 \ - \ 3 \   x^2 \ – \ 25 \ x \ + \  21
(B)  x^3 \ - \ 3 \   x^2 \ + \ 25 \ x \ + \  21
(C)  x^3 \ - \ 3 \   x^2 \ + \ 25 \ x \ - \  21
(D)  x^3 \ + \ 3 \   x^2 \ – \ 25 \ x \ + \  21
15-  (x^{5})^{\frac{2}{7}}
(A)  x^{ \frac{11}{7}}
(B)  x^{ \frac{10}{7}}
(C)  x^{ \frac{9}{7}}
(D)  x^{ \frac{8}{7}}
16- How many 6 \ × \ 6  squares can fit inside a rectangle with a height of 42 and width of 18?
(A) 21
(B) 16
(C) 24
(D) 36
17- If a vehicle is driven 42 miles on Monday, 47 miles on Tuesday, and 31 miles on Wednesday, what is the average number of miles driven each day?
(A) 42 miles
(B) 45 miles
(C) 46 miles
(D) 40 miles
18- Alex’s average (arithmetic mean) on two mathematics tests is 10 . What should Liam’s score be on the next test to have an overall of 12 for all the tests?
(A) 12
(B) 18
(C) 16
(D) 10
19- If 6\ -  \ 3  \ x \ ≤ \ 18 , what is the value of x  \geq ?
(A) 4
(B) 3
(C) -4
(D) -3
20- 9^{5 } \ × \ 9^{ - \ 8} \ =
(A) 9^{ 3}
(B) 9^{ - \ 3}
(C) 9^{ 14}
(D) 9^{ 10}
Accuplacer Math for Beginners
$24.99 $13.99
44% Off*

The Ultimate Step by Step Guide to Preparing for the Accuplacer Math Test

College–Level Mathematics
21- cos 2 \ \theta = ?
(A)  1\  + \ 2 \ sin^2\ \theta
(B)  1\  - \ 2 \ sin^2\ \theta
(C) - \ 2 \ sin^2\ \theta
(D)   2 \ sin^2\ \theta
22- If  \theta  is an acute angle and sin \theta =\frac{4}{5} , cos \theta =
(A) \frac{4}{5}
(B) \frac{3}{5}
(C) \frac{2}{5}
(D) \frac{1}{5}
23- If the center of a circle is at the point (4, - \ 1)   and its circumference equals to 4 \ π , what is the standard form equation of the circle?
(A) (x \ +\ 4)^2 \ + \ (y \ + \ 1)^2  = 2
(B) (x \ -  \ 4)^2 \ + \ (y \ + \ 1)^2 \ = \ 4
(C) (x \ -  \ 4)^2 \ + \ (y \ + \ 1)^2 \ = \ 2
(D) (x \ -  \ 4)^2 \ + \ (y \ - \ 1)^2 \ = \ 4
24- What is the solution of the following system of equations?
\begin{cases}  4 \ x \ + \ y  =  8 \\ - \ 8 \ x \ - \ 4 \ y =  16\end{cases}
(A) (6,  16)
(B) (- \ 6,  16)
(C) (6, - \ 16)
(D) (6, 16)
25- What is the center and radius of a circle with the following equation?
(x \ – \ 6)^2 \ + \ (y \ + \ 4)^2 \ = \ 5
(A) (6,  4), \ \sqrt{5}
(B) (6 , - \  4), \ \sqrt{5}
(C) (- \ 6 , - \  4), \ \sqrt{5}
(D) (- \ 6 ,   4), \ \sqrt{5}
26- If sin A =\  \frac{2}{5} in a right triangle and the angle A is an acute angle, then what is cos A ? 
(A) \frac{\sqrt{22}}{5}
(B) \frac{\sqrt{20}}{5}
(C) \frac{\sqrt{21}}{5}
(D) \frac{\sqrt{3}}{5}
27- If \log_{3}{x \ = \ 6} , then x \ = ?
(A) 729
(B) 243
(C) 719
(D) 216
28- Simplify: \frac{2 \sqrt{12}}{9 \sqrt{48}}
(A) \frac{2}{9}
(B) \frac{4}{9}
(C) \frac{1}{9}
(D) \frac{5}{9}
29- What’s the reciprocal of   \frac{25}{x^3} ?
(A) \frac{x^3}{25  }
(B) \frac{25}{x^3  }
(C) \frac{5}{x  }
(D) \frac{5}{x ^3 }
30- If \log_{4}{x \ = \ 3} , then x  \ = ?
(A) 81
(B) 16
(C) 64
(D) 36
31- What is sin  60^\circ ?
(A) \frac{\sqrt{3}}{2}
(B) \sqrt{3}
(C) - \ \sqrt{3}
(D) - \ \frac{\sqrt{3}}{2}
32- Find the inverse function for ln (4 \ x \ - \ 3)
(A) \frac{1}{4} (e^{\ x} \ - \ 3)
(B) \frac{1}{2} (e^{\ x} \ + \ 3)
(C) \frac{1}{4} (e^{\ x} \ + \ 3)
(D) \frac{1}{2} (e^{\ x} \ - \ 3)
33- Solve.
| \ 15 \ – \ (18 \ ÷ \ | \ 3 \ + \ 6 \ |)| = ?
(A) - \ 13
(B) - \ 12
(C) 12
(D) 13
34- Simplify ( – \ 7 \  + \  2 \ i) \ (9 \  + \  4 \ i) .
(A)  - \ 10 \  i \ - \ 71
(B)  - \ 10 \  i \ + \ 71
(C)   10 \  i \ + \ 71
(D)   10 \  i \ - \ 71
35- If f(x) \ = \ x \ – \frac{4}{5} and f ^{ \ – \ 1} is the inverse of f(x) , what is the value of  f^{ \ - \ 1}(2)
(A) \frac{7}{5} 
(B) \frac{16}{5}
(C) \frac{6}{5} 
(D) \frac{14}{5}
36- Find tan \frac{4 \ π}{3}
(A)   - \ \sqrt{3} 
(B) \sqrt{3} 
(C) 2 \  \sqrt{3} 
(D) - \ 2 \  \sqrt{3} 
 
37- Solve the equation: \log_{5}{(x \ -  \ 4)} \ –  \ \log_{5}{(x \ + \ 3)}⁡  \ = \ 1
(A) \frac{9}{4}
(B) \frac{18}{4}
(C) \frac{14}{4}
(D) -\frac{19}{4}
38- If f(x) \ = 2 \ x \ + \ 6 and g(x) \ =  x^2 \ + \  3 \ x , then find (\frac{f}{g})  (x)
(A) \frac{2 \ x \ -  \ 6}{x^2 \ +\ 3 \  x} 
(B) \frac{2 \ x \ + \ 6}{x^2 \ +\ 3 \  x} 
(C) \frac{2 \ x \ + \ 6}{x^2 \ - \ 3 \  x} 
(D) \frac{2 \ x \ - \ 6}{x^2 \ - \ 3 \  x} 
39- The slop of a line with the equation  y \ = \ 6 \ x  \ + \ 12   is  …
(A) 4
(B) \frac{5}{3}
(C) \frac{5}{6}
(D) 6
40- Solve e^{(7 \ x \  + \  1 )} \ = \  8 
(A) \frac{ln⁡(8) \ +\ 1}{7}
(B) \frac{ln⁡(8) \ +\ 1}{5}
(C) \frac{ln⁡(8) \ -\ 1}{5}
(D) \frac{ln⁡(8) \ -\  1}{7}
1- Choice C is correct

The correct answer is  $ 16.88
$ 62 \  - \ $  45.12 \ = \ $ 16.88

2- Choice A is correct

The correct answer is (x \ – \  3) \ (x \ - \ 5)
x^2 \  -  \ 8 \ x \ + \ 15 \ = \ (x \ – \ 3) \ (x \ - \ 5)

3- Choice A is correct

The correct answer is 6254.7
Underline the tenth place:
6254.\underline{\\7}4164
Look to the right if it is 7 or above, give it a shove.
Then, round up to 6254.7

4- Choice D is correct

The correct answer is 45^\circ
90^\circ \ + \ 45^\circ   =  135^\circ
180^\circ \ - \ 135^\circ  =  45^\circ

5- Choice B is correct

The correct answer is 37.5\%
120\ × \ \frac{x}{100} \ = \ 45 \ ⇒ \ 120 \ × \ x \ = \ 4500 \ ⇒ \ x \ = \ \frac{4500}{120} =37.5\%

6- Choice A is correct

The correct answer is 3 \ y  \ +  \ 6  =  4 \ x
3 \ x \ + \ 6  =  4 \ x  has a graph that is a straight line

7- Choice C is correct

The correct answer is -\frac{1}{2} , 3
x_{1,2} \ = \ \frac{- \ b \ ± \ \sqrt{b^2 \ - \ 4 \ a \ c}}{2 \ a}
a \ x^2 \ + \ b \ x \ + \ c \ = \ 0
2 \ x^2 \ - \ 5 \ x \ – \ 3 \ = \ 0 \ ⇒ then: a \ = \ 2, b \ = - \ 5 \ and \ c \ = \ – \ 3
x \ = \ \frac{- \ (- \ 5) \ + \ \sqrt{(5^2) \ - \ (4) \ (2) \ ( - \ 3)}}{2 .2}  = 3
x \ = \ \frac{- \ (- \ 5 )\ - \ \sqrt{(5^2) \ - \ (4)\ (2) \ (- \ 3)}}{2.2} \ = -\ \frac{1}{2}

8- Choice B is correct

The correct answer is 10
C \ = \ \sqrt{(x_A \ - \ x_B)^2 \ + \ (y_A \ - \ y_B)^2  }
C \ = \ \sqrt{(2 \ - \ (- \ 4) )^2 \ + \ ( 4 \ - \ (- \ 4))^2 }
C \ = \ \sqrt{(6)^2 \ + \ ( 8)^2 }
C \ = \ \sqrt{36 \ + \ 64} 
C \ = \ \sqrt{100}  =  10

9- Choice D is correct

The correct answer is \frac{- \ 2 \ x \ + \ 15}{3 \ x^2 \ - \ 21}
Simplify:
\frac{\frac{4}{3} \ - \ \frac{2 \ x \ - \ 3}{9}}{\frac{x^2}{3} \ - \ \frac{7}{3}} = \frac{\frac{4}{3} \ - \ \frac{2 \ x \ - \ 3}{9}}{\frac{x^2 \ - \ 7}{3}} = \frac{ 3 \ (\frac{4}{3} \ - \ \frac{2 \ x \ - \ 3}{9 })}{x^2 \ - \ 7}
⇒Simplify: \frac{4}{3} \ - \ \frac{2 \ x \ - \ 3}{9 } = \frac{ -\ 2\ x \ + \ 15 }{9}
then: \frac{3(\frac{ - \ 2 \ x \ + \ 15 }{9})}{x^2 \ - \ 7} = \frac{\frac{ -\ 2 \ x \ + \ 15}{3 }}{x^2 \ - \ 7} = \frac{ - \ 2 \ x \ + \ 15}{3\ (x^2 \ - \ 7)} = \frac{-2 \ x \ +\ 15}{3 \ x^2 \ - \ 21}

10- Choice C is correct

The correct answer is $  254
42\ × \ $  65 \ = \ $  2730 Payable amount is: $ 3254 \ - \ $ 2730 \ = \ $  524    

11- Choice B is correct

The correct answer is 0.058
\frac{7}{120} \ = \ \frac{1}{17.14} \ =0.05833333333 \ \cong  \ 0.058 

12- Choice B is correct

The correct answer is 8 and 9
\sqrt{75} \ = 8.66025 ...
then:
\sqrt{75 } is between 8  and  9

13- Choice A is correct

The correct answer is \frac{- \ 5 \ ± \ \sqrt{31}}{3}
x_{1,2} \ = \ \frac{- \ b \ ± \ \sqrt{b^2 \ - \ 4 \ a \ c}}{2 \ a}
a \ x^2 \ + \ b \ x \ + \ c \ = \ 0
3 \ x^2 \ + \ 10 \ x \ - \ 2 = 0 \ ⇒ then: a = \ 3, b = 10 and c = -\ 2
x \ = \frac{- \ 10 \ + \ \sqrt{10^2 \ - \ (4) .(3 )(- \ 2 )}}{2.3} \ =\frac{- \ 5 \ - \ \sqrt{31}}{3} = -3.523
x \ = \frac{- \ 10 \ + \ \sqrt{10^2 \ - \ (4) .(3) .(-\ 2)}}{2.3} \ = \frac{- \ 5 \ + \ \sqrt{31}}{3} = 0.189

14- Choice D is correct

The correct answer is  x^3 \ + \ 3 \   x^2 \ – \ 25 \ x \ + \  21
Use FOIL (First, Out, In, Last)
(x \ + \ 7) (x^2 \ - \ 4 \ x \ + \ 3)  =  x^3 \ - \ 4 \ x^2 \ + \ 3 \ x \ + \ 7 \ x^2 \ – \ 28 \ x \ + \ 21  =   x^3 \ + \ 3 \   x^2 \ – \ 25 \ x \ + \  21

15- Choice B is correct

The correct answer is  x^{ \frac{10}{7}}
 (x^5)^{\frac{2}{7}}  =  x^{5 \ × \  \frac{2}{7}} \ = \ x^{ \frac{10}{7}} \ = \ x^{ \frac{10}{7}}

16- Choice A is correct

The correct answer is 21
Number of squares equal to: \frac{42 \ × \ 18}{6 \ × \ 6} \ = \ 7 \ × \ 3 =  21

17- Choice D is correct

The correct answer is 40 miles
42 \ + \ 47 \ + \ 31  =  120
Average = \ \frac{120}{3}  = 40 miles

18- Choice C is correct

The correct answer is 16
\frac{a \ + \ b}{2} \ = \ 10\ ⇒ \ a \ + \ b \ = \ 20
\frac{a \ + \ b \ + \ c}{3} \ = 12 \ ⇒ \ a \ + \ b \ + \ c \ = 36
20 \ + \ c \ = 36 \ ⇒ \ c \ = \ 36\ – \ 20 \ = \ 16

19- Choice C is correct

The correct answer is -4
Simplify: 
6 \ - \ 3 \ x \ ≤ \ 18 \ ⇒ - \ 3 \ x \  ≤ \ 18 \ – \ 6 \ ⇒ - \ 3 \ x \ ≤ \ 12 ⇒  x \ \geq \ -4

20- Choice B is correct

The correct answer is 9^{ - \ 3}
9^{ 5} \ × \ 9^{ -  \  8} \ =  9^{ 5 \ + (- \ 8)} =  9^{- \ 3}

20- Choice B is correct

The correct answer is 9^{ - \ 3}
9^{ 5} \ × \ 9^{ -  \  8} \ =  9^{ 5 \ + (- \ 8)} =  9^{- \ 3}

21- Choice B is correct

The correct answer is  1\  - \ 2 \ sin^2\ \theta
cos\ 2\ \theta = cos^2\ \theta \ - \  sin^2\ \theta = 2 \ cos^2\ \theta \ -\  1 = 1 \ -\  2\  sin^2\ \theta

22- Choice B is correct

The correct answer is \frac{3}{5}
sin θ \ = \ \frac{4}{5} \ ⇒ we have following triangle, then:
c = \ \sqrt{5^2 \ - \ 4 ^2} \ = \ \sqrt{25 \ - \ 16} \ = \ \sqrt{9} \ = \ 3
cos θ \ = \ \frac{3}{5}

23- Choice B is correct

The correct answer is (x \ -  \ 4)^2 \ + \ (y \ + \ 1)^2 \ = \ 2
(x \ – \  h)^2 \ + \  (y \  – \  k)^2 \ = \ r^2 \ ⇒ center: (h,k)  and radius: r
center: (4 , - \ 1 ) \ ⇒ \ h  =  4, k  =  - \ 1 
circumference =  4 \ π ⇒ circumference =  2 \ π \ r  =  4 \ π \ ⇒ \ r \ = \ 2
(x \ -  \ 4)^2 \ + \ (y \ + \ 1)^2 \ = \ 4

24- Choice C is correct

The correct answer is (6, - \ 16)
\begin{cases}4 \ x \ + \ y \ = 8 \\ - \ 8 \ x \ - \ 4 \ y \ = 16\end{cases}⇒ Multiplication (4) in first equation ⇒ \ \begin{cases}16 \ x \ + \ 4 \ y \ = 32 \ \\ - \ 8 \ x \ - \ 4 \ y = 16\end{cases}
Add two equations together ⇒\ 8 \ x \ = 48 \ ⇒ x = 6 then: y = - \ 16

25- Choice B is correct

The correct answer is (6, - \ 4), \ \sqrt{5}
(x \ – \  h)^2 \ + (y \ – \ k)^2 =  r^2 \ ⇒ center: (h,k) and radius: r
(x \ – \ 6)^2 \ + \ (y \ + \ 4)^2  =  5 ⇒ center: (6, -  \ 4) and radius: \ \sqrt{5}

26- Choice C is correct

The correct answer is \frac{\sqrt{21}}{5}
sin A= \ \frac{2}{5 } \ ⇒ we have following triangle, then
c \ = \ \sqrt{5 ^{2} \ - \ 2^{2}} \ = \ \sqrt{25 \ - \ 4} \ = \ \sqrt{21}
cos⁡ A = \ \frac{adjacent}{hypotenuse} \ → cos A = \ \frac{\sqrt{21}}{5}

27- Choice A is correct

The correct answer is 729
METHOD ONE
\log_{3}{x} \ = \ 6
Apply logarithm rule: a \ = \ \log_{3}{(b^a)}
6 \ = \ \log_{3}{3^6} \ = \ \log_{3}{729}
\log_{3}{x} \ = \ \log_{3}{729}
When the logs have the same base: \log_{b}{(f (x))} \ = \ \log_{b}{(g (x))} \ ⇒ \ f (x) \ = \ g (x)
then: x \ = \ 729
METHOD TWO
We know that: \log_{a}{b} \ = \ c \ ⇒ \ b \ = \ a^c \ \log_{3}{x} \ = 6 \ ⇒ \ x \ = \ 3^6 \ = \ 729

28- Choice C is correct

The correct answer is \frac{1}{9}
\frac{ 2 \ \sqrt{12}}{ 9 \sqrt{48 }} 
\sqrt{48} \ =   2 \ \sqrt{12  }
\frac{ 2 \sqrt{12}}{9 .2 \ \sqrt{12}} \ = \ \frac{1}{9}

29- Choice A is correct

The correct answer is \frac{x^3}{25  }
\frac{25}{x^3}  ⇒ reciprocal is :    \frac{x^3}{25 }

30- Choice C is correct

The correct answer is 64
METHOD ONE
\log_{4}{x}⁡ = 3
Apply logarithm rule: a \ = \ log_b⁡(b^a)
3 = \log_{4}{4^3} = \log_{4}{64}
\log_{4}{64} = \log_{4}{x}
When the logs have the same base: \log_{b}{(f (x))} \ = \ \log_{b}{(g (x))} \ ⇒ \ f (x) \ = \ g (x)
then: x = 64
METHOD TWO
We know that: \log_{a}{b} \ = \ c \ ⇒ \ b \ = \ a^c \log_{4}{x}= 3 ⇒ x = 4^3 = 64

31- Choice A is correct

The correct answer is \frac{\sqrt{3}}{2}
sin 60^{°} \ = \ \frac{\sqrt{3}}{2}

32- Choice C is correct

The correct answer is \frac{1}{4} (e^{\ x} \ + \ 3)
f (x) \ = \ ln \ (4\ x \ - \ 3)
y \ = \ ln \ (4 \ x \ - \ 3 )
Change variables x and y: x \ = \ ln \ (4 \ y \ - \ 3)
solve: x \ = \ ln \ (4 \ y \ - \ 3 )
y \ = \ \frac{\ e^{\ x} \ + \ 3}{4 } \ = \ \frac{1}{4} (e^{\ x} \ + \ 3)

33- Choice D is correct

The correct answer is 13
| \ 15 \ – \ (18 \ ÷ \ | \ 3 \ + \ 6 \ |)| = | (15 \ - \ (18 \ ÷ \ | 9 |))| \ =
| \ 15 \ - \ (18 \ ÷ \ 9) \ | = |15 \ - \ 2| \ = \ | \ 13 \ | \ = \ 13

34- Choice A is correct

The correct answer is  - \ 10 \  i \ + \ 71
We know that: i \ = \ \sqrt{\ - \ 1} \ ⇒ \ i^2 \ = \ - \ 1
(- \ 7 \ + \  2\ i) \ (9 \ + \ 4 \ i)  =  - \ 63 \ - \ 28 \ i \ + \ 18 \ i \ + \ 8 \ i^2 \ =
 - \ 63 \ + \ 10 \ i \ - \ 8 \ =-  \ 10 \ i \ - \ 71

35- Choice D is correct

The correct answer is \frac{8}{5} 
f(x) \ = \ x \ – \frac{4}{5}  \ ⇒ \ y \ = \ x \ – \ \frac{4}{5} \ ⇒ \ y \ + \ \frac{4}{5} \ = \ x  
f^{ \ - \ 1} \ = \ x \ + \ \frac{4}{5}
f ^{ \ – \ 1}(2) \ =  2 \ + \ \frac{4}{5} \ = \ \frac{14}{5}

36- Choice B is correct

The correct answer is \sqrt{3} 
tan \frac{4 \ π}{3} \ = \   \frac{sin \ \frac{4 \ π}{3}}{cos \ \frac{4 \ π}{3}}  =   \frac{\frac{ - \ \sqrt{3}}{2}}{- \ \frac{1}{2}} \ =   \sqrt{3}

37- Choice D is correct

The correct answer is -\frac{19}{4}
METHOD ONE
\log_{5}{(x \ - \ 4)} – \log_{5}{(x \ + \ 3)} \ = \ 1
Add \log_{5}{(x \ + \ 3)} to both sides
\log_{5}{(x \ - \ 4)} \ - \ \log_{5}{(x \ + \ 3)} \ + \ \log_{5}{(x \ + \ 3)} \ = \ 1 \ + \ \log_{5}{(x \ + \ 3)}
Apply logarithm rule: a \ = \ \log_{b}{b^a} \ ⇒ \ 1 \ = \ \log_{5}{5^1} \ = \ \log_{5}{5}
then: \log_{5}{(x \ -  \ 4)} \ = \ \log_{5}{5} \ + \ \log_{5}{(x \ + \ 3)}
Logarithm rule: \log_{c}{a} \ + \ \log_{c}{b} \ = \ \log_{c}{ab}
then: \log_{5}{5} \ + \ \log_{5}{(x \ + \ 3)} = \log_{5}{(5(x \ + \ 3))}
\log_{5}{(x \ - \ 4)} \ = \ \log_{5}{(5 \ (x \ + \ 3))}
When the logs have the same base: \log_{b}{(f(x))} \ = \ \log_{b}{(g(x))} \ ⇒ \ f(x) \ = \ g(x)
(x \ - \ 4) \ = 5 \ (x \ + \ 3)
x \ =-  \ \frac{19}{4}
METHOD TWO
We know that: \log_{a}{b} \ - \ \log_{a}{c} \ = \ \log_{a}{\frac{b}{c}} and \log_{a}{b} \ = \ c \ ⇒ \ b \ = \ a^c
Then: \log_{5}{x \ - \ 4} \ - \ \log_{5}{x \ +\ 3} \ = \ \log_{5}{\frac{x \ - \ 4} {x \ + \ 3}} \ = \ 1 \ ⇒
\frac{x \ - \ 4}{x \ + \ 3} \ = \ 5^1 \ = \ 5 \ ⇒ \ x \ - \ 4 \ = \ 5 \ (x \ + \ 3)
⇒ \ x \ - \  4\ = \ 5 \ x \ + \ 15 \ ⇒ \ 5 \ x \ - \ x \ =\ -15 \ - \ 4 \ → \ 4 \ x \ = \ -19 \ ⇒ \ x \ =-  \ \frac{19}{4}

38- Choice B is correct

The correct answer is \frac{2 \ x \ + \ 6}{x^2 \ +\ 3 \  x} 
(\frac{f}{g})  (x) \ = \ \frac{f(x)}{g(x)} \ = \  \frac{2 \ x \ + \ 6}{x^2 \ +\ 3\  x}

39- Choice D is correct

The correct answer is 6
y \ = \ m \ x \ + \ b
m \ = slop
y \ = \ 6 \ x \ + \ 12
m \ = \ 6

40- Choice D is correct

The correct answer is \frac{ln⁡(8) \ - 1}{7}
e^{7 \ x \ + \ 1 } \ = \ 8 
If f(x) \ = \ g(x) , then ln(f(x)) \ = \ ln(g(x))
ln⁡(e^{7 \ x \  + \ 1 }) \ = \ ln(8)
Apply logarithm rule: \log_{a}{x^b} \ = \ b \log_{a}{x}
ln⁡(e^{7 \ x \ + \ 1 })  =  (7 \ x \ + \ 1) \ ln(e)
(7 \ x \  + \ 1) \ ln \ (e) \ = \ ln \ (8)
(7 \ x \ + \ 1) \ ln \ (e) \ = \ (7 \ x \ + \ 1)
(7 \ x \ + \ 1) \ = \ ln \ (8) \ ⇒ \ x \ = \ \frac{ln⁡(8) \ - 1}{7}

The Most Comprehensive Accuplacer Math Preparation Bundle
$76.99 $33.99
56% Off*

Bundle Includes Accuplacer Math Prep Books, Workbooks, and Practice Tests



More Free ACCUPLACER Mathematics Practice Test

Practice Test 1

Simulate test day with an official practice test. Then, score your test. The answers come with explanations so you can learn from your mistakes.

Start Practice Test

Practice Test 2

Simulate test day with an official practice test. Then, score your test. The answers come with explanations so you can learn from your mistakes.

Start Practice Test
 
 

You May Also Like to Read

More Articles