How to Find Missing Sides and Angles of a Right Triangle

How to Find Missing Sides and Angles of a Right Triangle

 Read,4 minutes

In a right triangle, when one side and an angle are given we can find a missing side.

Trigonometric Ratios

The following trigonometric ratios can be used to determine the length of the missing side in a right triangle.

Sin θ = Opposite SideHypotenuse

Cos θ = Adjacent SideHypotenuse

tan θ = Opposite SideAdjacent Side

Cot θ = Adjacent SideOpposite Side

Cosec θ = HypotenuseOpposite Side

Sec θ = HypotenuseAdjacent Side to

Example

Find the value of x.

Missing Sides and Angles of a Right Triangle

Solution

  • Hypotenuse Side = AC
  • Opposite Side = AB = x
  • Adjacent Side = BC = 7
  • θ = 30

The trigonometric ratio tan involves the adjacent and opposing sides.

tan(θ) = Opposite SideAdjacent Side = ABBC  33 = x7  x = 733  4.04

So, 4.04 is the measurement of the missing side.

Free printable Worksheets

Exercises for Finding the Missing Sides and Angles of a Right Triangle

1) Find the answer: x = ?

Missing Sides and Angles of a Right Triangle1

2) Find the answer: x = ?

Missing Sides and Angles of a Right Triangle2

3) Find the answer: x = ?

Missing Sides and Angles of a Right Triangle3

4) Find the answer: x = ?

Missing Sides and Angles of a Right Triangle4

5) Find the answer: x = ?

Missing Sides and Angles of a Right Triangle5

6) Find the answer: sin x = ? , cos x = ?

Missing Sides and Angles of a Right Triangle6

7) Find the answer: cos x = ? , tan x = ?

Missing Sides and Angles of a Right Triangle7

8) Find the answer: cot x = ? , sin x = ?

Missing Sides and Angles of a Right Triangle8

9) Find the answer: x = ?

Missing Sides and Angles of a Right Triangle9

10) Find the answer: x = ?

Missing Sides and Angles of a Right Triangle10

 

1) Find the answer: x = ?

Missing Sides and Angles of a Right Triangle1

\color{red}{tan \ 45° \ = \ 1 \ = \ \frac{AB}{BC} \ = \ \frac{x}{7} \ ⇒ \ x \ = \ \frac{\sqrt{2}}{2} \times 7 \ = \ \frac{7\sqrt{2}}{2}}

2) Find the answer: x \ = \ ?

Missing Sides and Angles of a Right Triangle2

\color{red}{tan \ x \ = \ \frac{AB}{BC} \ = \ \frac{5}{10} \ = \ \frac{1}{2} \ ⇒ \ x \ ≈ \ 26.565°}

3) Find the answer: x \ = \ ?

Missing Sides and Angles of a Right Triangle3

\color{red}{tan \ 60° \ = \ \sqrt{3} \ = \ \frac{AB}{BC} \ = \ \frac{6}{x} \ ⇒ \ x \ = \ \frac{6}{\sqrt{3}} \ = \ 2\sqrt{3}}

4) Find the answer: x \ = \ ?

Missing Sides and Angles of a Right Triangle4

\color{red}{tan \ 60° \ = \ \sqrt{3} \ = \ \frac{BC}{AB} \ = \ \frac{x}{11} \ ⇒ \ x \ = \ \sqrt{3} \times 11 \ = \ 11\sqrt{3}}

5) Find the answer: x \ = \ ?

Missing Sides and Angles of a Right Triangle5

\color{red}{tan \ x \ = \ \frac{BC}{AB} \ = \ \frac{4\sqrt{3}}{4} \ = \ \sqrt{3} \ ⇒ \ x \ = \ 60°}

6) Find the answer: sin \ x \ = \ ? \ , \ cos \ x \ = \ ?

Missing Sides and Angles of a Right Triangle6

\color{red}{AC \ = \ \sqrt{3^2 \ + \ 4^2} \ = \ 5}
\color{red}{sin \ x \ = \ \frac{BC}{AC} \ = \ \frac{4}{5}}
\color{red}{cos \ x \ = \ \frac{AB}{AC} \ = \ \frac{3}{5}}

7) Find the answer: cos \ x \ = \ ? \ , \ tan \ x \ = \ ?

Missing Sides and Angles of a Right Triangle7

\color{red}{BC \ = \ \sqrt{10^2 \ - \ 8^2} \ = \ \sqrt{36} \ = \ 6}
\color{red}{cos \ x \ = \ \frac{BC}{AC} \ = \ \frac{6}{10} \ = \ \frac{3}{5}}
\color{red}{tan \ x \ = \ \frac{AB}{AC} \ = \ \frac{8}{6} \ = \ \frac{4}{3}}

8) Find the answer: cot \ x \ = \ ? \ , \ sin \ x \ = \ ?

Missing Sides and Angles of a Right Triangle8

\color{red}{AB \ = \ \sqrt{15^2 \ - \ 12^2} \ = \ \sqrt{81} \ = \ 9}
\color{red}{cot \ x \ = \ \frac{BC}{AB} \ = \ \frac{12}{9} \ = \ \frac{4}{3}}
\color{red}{sin \ x \ = \ \frac{AB}{AC} \ = \ \frac{9}{15} \ = \ \frac{3}{5}}

9) Find the answer: x \ = \ ?

Missing Sides and Angles of a Right Triangle9

\color{red}{cos \ 45° \ = \ \frac{\sqrt{2}}{2} \ = \ \frac{BC}{AC} \ = \ \frac{9}{x} \ ⇒ \ x \ = \ 9 \times \frac{2}{\sqrt{2}} \ = \ \frac{\sqrt{2}}{9}}

10) Find the answer: x \ = \ ?

Missing Sides and Angles of a Right Triangle10

\color{red}{cos \ 49° \ ≈ \ 0.656 \ = \ \frac{BC}{AC} \ = \ \frac{9}{x} \ ⇒ \ x \ = \ 9 \times \frac{1}{0.656} \ ≈ \ 13.719}

Missing Sides and Angles of a Right Triangle Practice Quiz