How to Write Each Measure in Radians

How to Write Each Measure in Radians

 Read,4 minutes

Angle measurement in geometry is represented by both a degree and a radian. 2π or 360° can be used to symbolize an entire counterclockwise rotation. As a result, degree and radian may be compared as follows:

2π = 360° And π = 180°

In general geometry, we often represent the angle in degree (°). When measuring the angles of trigonometric or periodic functions, radians are often considered. Radians are always expressed in terms of pi: pi = 227 or 3.14.

How to Convert Degrees to Radians?

π radians is equivalent to 180 degrees. Any given angle must be multiplied by π180 to be converted from the degree scale to the radian scale.

Angle in radian = Angle in degree ×π180

where π = 227 or 3.14.

Example

Convert 50° to radians

Solution

Angle in radian = Angle in degree ×π180  50° ×π180 = 5π18

Free printable Worksheets

Exercises for Writing Each Measure in Radians

1) Find the answer: 440° =

2) Find the answer: 145° =

3) Find the answer: 250° =

4) Find the answer: 560° =

5) Find the answer: 750° =

6) Find the answer: 590° =

7) Find the answer: 115° =

8) Find the answer: 85° =

9) Find the answer: 1050° =

10) Find the answer: 280° =

 

1) Find the answer: 440° =

440°360° = θ2π  θ = 440°×2π360°  θ = 22π9

2) Find the answer: 145° =

145°360° = θ2π  θ = 145°×2π360°  θ = 29π36

3) Find the answer: 250° =

250°360° = θ2π  θ = 250°×2π360°  θ = 25π18

4) Find the answer: 560° =

560°360° = θ2π  θ = 560°×2π360°  θ = 28π9

5) Find the answer: 750° =

750°360° = θ2π  θ = 750°×2π360°  θ = 25π6

6) Find the answer: 590° =

750°360° = θ2π  θ = 750°×2π360°  θ = 59π18

7) Find the answer: 115° =

115°360° = θ2π  θ = 115°×2π360°  θ = 23π36

8) Find the answer: 85° =

115°360° = θ2π  θ = 115°×2π360°  θ = 17π36

9) Find the answer: 1050° =

1050°360° = θ2π  θ = 1050°×2π360°  θ = 35π6

10) Find the answer: 280° =

280°360° = θ2π  θ = 280°×2π360°  θ = 14π9

Writing Each Measure in Radians Practice Quiz