How to Write Each Measure in Radians

How to Write Each Measure in Radians

 Read,4 minutes

Angle measurement in geometry is represented by both a degree and a radian. or 360° can be used to symbolize an entire counterclockwise rotation. As a result, degree and radian may be compared as follows:

2π \ = \ 360° And π \ = \ 180°

In general geometry, we often represent the angle in degree (°). When measuring the angles of trigonometric or periodic functions, radians are often considered. Radians are always expressed in terms of pi: pi \ = \ \frac{22}{7} or 3.14.

How to Convert Degrees to Radians?

π radians is equivalent to 180 degrees. Any given angle must be multiplied by \frac{π}{180} to be converted from the degree scale to the radian scale.

Angle in radian = Angle in degree \times \frac{π}{180}

where π \ = \ \frac{22}{7} or 3.14.

Example

Convert 50° to radians

Solution

Angle in radian = Angle in degree \times \frac{π}{180} ⇒ \ 50° \ \times \frac{π}{180} \ = \ \frac{5π}{18}

Free printable Worksheets

Exercises for Writing Each Measure in Radians

1) Find the answer: 440° \ =

2) Find the answer: 145° \ =

3) Find the answer: -250° \ =

4) Find the answer: 560° \ =

5) Find the answer: 750° \ =

6) Find the answer: 590° \ =

7) Find the answer: 115° \ =

8) Find the answer: 85° \ =

9) Find the answer: -1050° \ =

10) Find the answer: -280° \ =

 

1) Find the answer: 440° \ =

\color{red}{\frac{440°}{360°} \ = \ \frac{θ}{2π} \ ⇒ \ θ \ = \ \frac{440° \times 2π}{360°} \ ⇒ \ θ \ = \ \frac{22π}{9}}

2) Find the answer: 145° \ =

\color{red}{\frac{145°}{360°} \ = \ \frac{θ}{2π} \ ⇒ \ θ \ = \ \frac{145° \times 2π}{360°} \ ⇒ \ θ \ = \ \frac{29π}{36}}

3) Find the answer: -250° \ =

\color{red}{\frac{-250°}{360°} \ = \ \frac{θ}{2π} \ ⇒ \ θ \ = \ \frac{-250° \times 2π}{360°} \ ⇒ \ θ \ = \ -\frac{25π}{18}}

4) Find the answer: 560° \ =

\color{red}{\frac{560°}{360°} \ = \ \frac{θ}{2π} \ ⇒ \ θ \ = \ \frac{560° \times 2π}{360°} \ ⇒ \ θ \ = \ \frac{28π}{9}}

5) Find the answer: 750° \ =

\color{red}{\frac{750°}{360°} \ = \ \frac{θ}{2π} \ ⇒ \ θ \ = \ \frac{750° \times 2π}{360°} \ ⇒ \ θ \ = \ \frac{25π}{6}}

6) Find the answer: 590° \ =

\color{red}{\frac{750°}{360°} \ = \ \frac{θ}{2π} \ ⇒ \ θ \ = \ \frac{750° \times 2π}{360°} \ ⇒ \ θ \ = \ \frac{59π}{18}}

7) Find the answer: 115° \ =

\color{red}{\frac{115°}{360°} \ = \ \frac{θ}{2π} \ ⇒ \ θ \ = \ \frac{115° \times 2π}{360°} \ ⇒ \ θ \ = \ \frac{23π}{36}}

8) Find the answer: 85° \ =

\color{red}{\frac{115°}{360°} \ = \ \frac{θ}{2π} \ ⇒ \ θ \ = \ \frac{115° \times 2π}{360°} \ ⇒ \ θ \ = \ \frac{17π}{36}}

9) Find the answer: -1050° \ =

\color{red}{\frac{-1050°}{360°} \ = \ \frac{θ}{2π} \ ⇒ \ θ \ = \ \frac{-1050° \times 2π}{360°} \ ⇒ \ θ \ = \ -\frac{35π}{6}}

10) Find the answer: -280° \ =

\color{red}{\frac{-280°}{360°} \ = \ \frac{θ}{2π} \ ⇒ \ θ \ = \ \frac{-280° \times 2π}{360°} \ ⇒ \ θ \ = \ -\frac{14π}{9}}

Writing Each Measure in Radians Practice Quiz