1) \( 2 {2 \over 3} \ \times \ 1 {1 \over 7} = \ \)\( \ \color{red}{ {(2 \times 3 + 2) \ \times \ (1 \times 7 + 1) \over 3\times7} = {64 \over 21} \ }\)
Solution:
Step 1: Convert mixed numbers to fractions, \( 2 {2 \over 3} = {8 \over 3}\) and \( 1 {1\over 7} = {8 \over 7}\)
Step 2: Apply the fractions rule for multiplication, \({8 \over 3} \times {8 \over 7} \) = \({8 \times \ 8 \over 3\times7} = \) \({64 \over 21} \)
2) \( 8 {4 \over 5} \ \times \ 4 {3 \over 10} = \ \)\( \ \color{red}{{(8 \times 5 + 4) \ \times \ (4 \times 10 + 3) \over 5\times10} = } \) \(\color{red}{{1892 \over 50} = \ 37{21 \over 25}}\)
GCF(42,50) = 2
Solution:
Step 1: Convert mixed numbers to fractions, \( 8 {4 \over 5} = {44 \over 5}\) and \( 4 {3\over 10} = {43 \over 10}\)
Step 2: Apply the fractions rule for multiplication, \({44 \over 5} \times {43 \over 10} \) = \({1892 \over 50} \) = \(37{21 \over 25}\)
3) \( 2 {4 \over 7} \ \times \ 1 {2 \over 5} = \ \)\( \ \color{red}{{(2 \times 7 + 4) \ \times \ (1 \times 5 + 2) \over 7\times5} = } \) \(\color{red}{{126 \over 35} = \ {18 \over 5} = \ 3{3 \over 5} }\)
GCF(126,35) = 7
Solution:
Step 1: Convert mixed numbers to fractions, \( 2 {4 \over 7} = {18 \over 7}\) and \( 1 {2\over 5} = {7 \over 5}\)
Step 2: Apply the fractions rule for multiplication, \({18 \over 7} \times {2\over 5} \) = \({126 \over 35} \) = \({18 \over 5}\) = \(3{3 \over 5}\)
4) \( 3 {1 \over 2} \ \times \ 2 {2 \over 3} = \ \)\( \ \color{red}{{(3 \times 2 + 1) \ \times \ (2 \times 3 + 2) \over 2\times6} = } \) \(\color{red}{{56 \over 12} = \ {14 \over 3} = \ }\)
GCF(56,12) = 4
Solution:
Step 1: Convert mixed numbers to fractions, \( 3 {1 \over 2} = {7 \over 2}\) and \( 2 {2\over 3} = {8 \over 3}\)
Step 2: Apply the fractions rule for multiplication, \({7 \over 2} \times {8\over 3} \) = \({56 \over 6} \) = \({28 \over 3}\)
5) \( 5 {5 \over 7} \ \times \ 4 {3 \over 5} = \ \)\( \ \color{red}{{(5 \times 7 + 5) \ \times \ (4 \times 5 + 3) \over 7\times5} = } \) \(\color{red}{{920 \over 35} = \ 26{2 \over 7}}\)
GCF(920,35) = 5
Solution:
Step 1: Convert mixed numbers to fractions, \( 5 {5 \over 7} = {40 \over 7}\) and \( 4 {3 \over 5} = {23 \over 53}\)
Step 2: Apply the fractions rule for multiplication, \({40 \over 7} \times {23 \over 53} \) = \({920 \over 35} \) = \(26{2 \over 7}\)
6) \( 3 {1 \over 3} \ \times \ 1 {4 \over 7} = \ \)\( \ \color{red}{{(3 \times 3 + 1) \ \times \ (1 \times 7 + 4) \over 3\times7} = } \) \(\color{red}{{110 \over 21} = \ 5{5 \over 21}}\)
Solution:
Step 1: Convert mixed numbers to fractions, \( 3 {1 \over 3} = {10 \over 3}\) and \( 1 {4 \over 7} = {11 \over 7}\)
Step 2: Apply the fractions rule for multiplication, \({10 \over 3} \times {11 \over 7} \) = \({110 \over 21} \) = \(5{5 \over 21}\)
7) \( 3 {2 \over 3} \ \times \ 2 {3 \over 4} = \ \)\( \ \color{red}{{(3 \times 3 + 2) \ \times \ (2 \times 4 + 3) \over 3\times4} = } \) \(\color{red}{{121 \over 12} = \ 10{1 \over 12}}\)
Solution:
Step 1: Convert mixed numbers to fractions, \( 3 {2 \over 3} = {11 \over 3}\) and \(2 {3 \over 4} = {11 \over 4}\)
Step 2: Apply the fractions rule for multiplication, \({11 \over 3} \times 2 {3 \over 4} \) = \({121 \over 12} \) = \(10{1 \over 12}\)
8) \( 1 {3 \over 8} \ \times \ 1 {2 \over 7} = \ \)\( \ \color{red}{{(1 \times 8 + 3) \ \times \ (1 \times 7 + 2) \over 8\times7} = } \) \(\color{red}{{99 \over 56} = \ 1{43 \over 56}}\)
Solution:
Step 1: Convert mixed numbers to fractions, \( 1 {3 \over 8} = {11 \over 8}\) and \(1 {2 \over 7} = {9 \over 7}\)
Step 2: Apply the fractions rule for multiplication, \({11 \over 8} \times {9 \over 7} \) = \({99 \over 56} \) = \(1{43 \over 56}\)
9) \( 2 {1 \over 4} \ \times \ 3 {4 \over 5} = \ \)\( \ \color{red}{{(2 \times 4 + 1) \ \times \ (3 \times 5 + 4) \over 4\times5} = } \) \(\color{red}{{171 \over 20} = \ 8{11 \over 20}}\)
Solution:
Step 1: Convert mixed numbers to fractions, \( 2 {1 \over 4} = {9 \over 4}\) and \(3 {4 \over 5} = {19 \over 5}\)
Step 2: Apply the fractions rule for multiplication, \({9 \over 4} \times {19 \over 5} \) = \({171 \over 20} \) = \(8{11 \over 20}\)
10) \( 1 {1 \over 9} \ \times \ 2 {2 \over 6} = \ \)\( \ \color{red}{{(1 \times 9 + 1) \ \times \ (2 \times 6 + 2) \over 9\times6} = } \) \(\color{red}{{140 \over 54} = \ {70 \over 27} = \ 2{16 \over 27}}\)
GCF(140,54) = 10
Solution:
Step 1: Convert mixed numbers to fractions, \( 1 {1 \over 9} = {10 \over 9}\) and \(2 {2 \over 6} = {14 \over 6}\)
Step 2: Apply the fractions rule for multiplication, \({10 \over 9} \times {14 \over 6} \) = \({140 \over 54} \) = \({70 \over 27} = 2{16 \over 27}\)