1) \( 6 {5 \over 4} \ \div \ 2 {2 \over 3} = \ \color{red}{ {(6 \times 4 + 5) \ \times \ 3 \over 4\times (2 \times 3 + 2)} = } \color{red}{ {87 \over 32} = \ } \color{red}{2{23 \over 32}}\)
Solution:
Step 1: Convert mixed numbers to fractions, \( 6 {5 \over 4} = { 29 \over 4} \) and \( 2 {2 \over 3} = {8 \over 3} \)
Step 2: Apply the fractions rule for multiplication, \( { 29 \over 4} \ \div \ {8 \over 3} = \ \)\( { 29 \over 4} \ \times\ {3 \over 8} = \ \) \({87 \over 32} = \) \(2{23 \over 32}\)
2) \( 4 {3 \over 4} \ \div \ 1 {4 \over 7} = \ \color{red}{ {(4 \times 4 + 3) \ \times \ 7 \over 4\times (1 \times 7 + 4)} = } \color{red}{ {133 \over 44} = \ } \color{red}{3{1 \over 44}}\)
Solution:
Step 1: Convert mixed numbers to fractions, \( 4 {3 \over 4} = { 19 \over 4} \) and \( 1 {4 \over 7} = {11 \over 7} \)
Step 2: Apply the fractions rule for multiplication, \( { 19 \over 4} \ \div \ {11 \over 7} = \ \)\( { 19 \over 4} \ \times\ {7 \over 11} = \ \) \({133 \over 44} = \) \(3{1 \over 44}\)
3) \( 7 {7 \over 2} \ \div \ 4 {3 \over 4} = \ \color{red}{{(7 \times 2 + 7) \ \times \ 4 \over 2\times (4 \times 4 + 3)} = } \color{red}{{84 \over 38} = \ } \color{red}{2{8 \over 38}}\)
Solution:
Step 1: Convert mixed numbers to fractions, \( 7 {7 \over 2} = { 21 \over 2} \) and \( 4 {3 \over 4} = {19 \over 4} \)
Step 2: Apply the fractions rule for multiplication, \( { 21 \over 2} \ \div \ {19 \over 4} = \ \)\( { 21 \over 2} \ \times\ {4 \over 19} = \ \) \({84 \over 38} = \) \(2{8 \over 38}\)
4) \( 10 {4 \over 3} \ \div \ 3 {5 \over 10} = \ \ \color{red}{{(10 \times 2 + 3) \ \times \ 10 \over 2\times (3 \times 10 + 5)} = } \color{red}{{68\over 21} = \ 3{5 \over 21} }\)
Solution:
Step 1: Convert mixed numbers to fractions, \( 10 {4 \over 3} = { 34 \over 3} \) and \( 3 {5 \over 10} = {35 \over 10} \)
Step 2: Apply the fractions rule for multiplication, \( { 34 \over 3} \ \div \ {35 \over 10} = \ \)\( { 34 \over 3} \ \times\ {10 \over 35} = \ \) \({68\over 2} = \) \(3{5 \over 21}\)
5) \( 8 {7 \over 2} \ \div \ 7 {6 \over 4} = \ \color{red}{{(8 \times 2 + 7) \ \times \ 4 \over 2\times (7 \times 4 + 6)} = } \color{red}{{92 \over 68} = \ } color{red}{1{6 \over 17}}\)
Solution:
Step 1: Convert mixed numbers to fractions, \( 8 {7 \over 2} = { 23 \over 2} \) and \( 7 {6 \over 4} = {34 \over 4} \)
Step 2: Apply the fractions rule for multiplication, \( { 23 \over 2}\ \div \ {34 \over 4} = \ \) \( { 23 \over 2} \ \times\ {4 \over 34} = \ \) \({92 \over 68} = \) \(1{6 \over 17}\)
6) \( 10 {7 \over 2} \ \div \ 7 {7 \over 9} = \ \color{red}{{(10 \times 2 + 7) \ \times \ 9 \over 2\times (7 \times 9 + 7)} = } \color{red}{{243 \over 140} = \ } \color{red}{1{103 \over 140}}\)
Solution:
Step 1: Convert mixed numbers to fractions, \( 10 {7 \over 2} = { 27 \over 2} \) and \( 7 {7 \over 9} = {70 \over 9} \)
Step 2: Apply the fractions rule for multiplication, \( { 23 \over 2}\ \div \ {34 \over 4} = \ \)\( { 27 \over 2} \ \times\ {9 \over 70} = \ \) \({243 \over 140} = \) \(1{103 \over 140}\)
7) \( 7 {9 \over 6} \ \div \ 5 {4 \over 5} = \ \color{red}{{(7 \times 6 + 9) \ \times \ 5 \over 6\times (5 \times 5 + 4)} = } \color{red}{{255 \over 174} = \ } \color{red}{1{27 \over 58}}\)
GCF(255,174) = 3
Solution:
Step 1: Convert mixed numbers to fractions, \( 7 {9 \over 6} = { 51 \over 6} \) and \( 5 {4 \over 5} = {29 \over 5} \)
Step 2: Apply the fractions rule for multiplication, \( {51 \over 6}\ \div \ {29 \over 5} = \ \)\( { 51 \over 6} \ \times\ {5 \over 29} = \ \) \({255 \over 174} = \) \(1{27 \over 58}\)
8) \( 5 {5 \over 3} \ \div \ 2 {8 \over 7} = \ \color{red}{{(5 \times 3 + 5) \ \times \ 7 \over 3\times (2 \times 7 + 8)} = } \color{red}{{140 \over 66} = \ } \color{red}{2{4 \over 33}}\)
GCF(140,66) = 2
Solution:
Step 1: Convert mixed numbers to fractions, \( 5 {5 \over 3} = { 20 \over 3} \) and \( 2 {8 \over 7} = {22 \over 7} \)
Step 2: Apply the fractions rule for multiplication, \( {20 \over 3}\ \div \ {22 \over 7} = \ \)\( { 20 \over 3} \ \times\ {7 \over 22} = \ \) \({140 \over 66} = \) \( 2{4 \over 33}\)
9) \( 10 {8 \over 10} \ \div \ 1 {7 \over 9} = \ \color{red}{{(10 \times 10 + 8) \ \times \ 9 \over 10\times (1 \times 9 + 7)} = } \color{red}{{ 972 \over 160} = \ } \color{red}{ 6{3 \over 40}}\)
GCF(972,160) = 6
Solution:
Step 1: Convert mixed numbers to fractions, \( 10 {8 \over 10} = { 108 \over 10} \) and \( 1 {7 \over 9} = {16 \over 9} \)
Step 2: Apply the fractions rule for multiplication, \( {108 \over 10}\ \div \ {16 \over 9} = \ \)\( { 108 \over 10} \ \times\ {9 \over 16} = \ \) \({972 \over 160} = \) \( 6{3 \over 40}\)
10) \( 10 {8 \over 3} \ \div \ 2 {1 \over 7} = \ \color{red}{{(10 \times 3 + 8) \ \times \ 7 \over 3\times (2 \times 7 + 1)} = } \color{red}{{ 266 \over 45} = \ } \color{red}{ 5{41 \over 45}}\)
Solution:
Step 1: Convert mixed numbers to fractions, \( 10 {8 \over 3} = { 38 \over 3} \) and \( 1 {7 \over 9} = {16 \over 9} \)
Step 2: Apply the fractions rule for multiplication \( {38 \over 3}\ \div \ {16 \over 9} = \ \)\( { 38 \over 3} \ \times\ {9 \over 16} = \) \({266 \over 45} = \) \( 5{41 \over 45}\)