1) \( 7 {2 \over 9} \ + \ 3 {3 \over 4} = \ \)\( \ \color{red}{(7 + 3)+{2 \times 4 \ + \ 3 \times 9 \over 9\times4} = } \) \(\color{red}{10{35 \over 36}}\)
Solution:
The first step is to rewrite the equation with parts separated, \(7+{2 \over 9}+3+{3 \over 4}\)
Then solve the whole number parts \(7+3=10\)
Now solve the fraction parts, and rewrite to solve with the equivalent fractions. \({2 \over 9}+{3 \over 4}\) = \( 2 \times 4 \ + \ 3 \times 9 \over 9 \times4 \) = \( 8+27 \over 36 \) = \( 35 \over 36\)
At the end Combine the whole and fraction parts \(10 +{35 \over 36}\) = \(10{35 \over 36}\)
2) \( 5 {3 \over 7} \ + \ 1 {5 \over 2} = \ \)\( \ \color{red}{(5 + 1)+{3 \times 2 \ + \ 5 \times 7 \over 7\times2} = } \) \(\color{red}{6{41 \over 14} = 8{13 \over 14}}\)
Solution:
The first step is to rewrite the equation with parts separated, \(5+{3 \over 7}+1+{5 \over 2}\)
Then solve the whole number parts \(5+1=6\)
Now solve the fraction parts, and rewrite to solve with the equivalent fractions. \({3 \over 7} +{5 \over 2}\) = \( 3 \times 2 \ + \ 5 \times 7 \over 7 \times 2 \) = \( 6 + 35 \over 14 \) = \( 41 \over 14\) = \(2{ 13\over 14}\)
At the end Combine the whole and fraction parts \(6 +2{13\over 14}\) = \(8{13 \over 14}\)
3) \( 4 {6 \over 5} \ + \ 7 {2 \over 4} = \ \)\( \ \color{red}{(4 + 7)+{6 \times 4 \ + \ 2 \times 5 \over 5\times4} = } \) \(\color{red}{11{34 \over 20}}\)\(\color{red}{ = 11 + 1{14 \over 20}}\)\(\color{red}{ = 12{14 \over 20} = 12{ 7 \over 10}}\)
Solution:
The first step is to rewrite the equation with parts separated, \(4+{6 \over 5}+7+{2 \over 4}\)
Then solve the whole number parts \(4+7=11\)
Now solve the fraction parts, and rewrite to solve with the equivalent fractions. \({6 \over 5} +{2 \over 4}\) = \( 6 \times 4 \ + \ 2 \times 5 \over 5 \times 4 \) = \(34\over 20 \) = \( 1{14 \over 20}\) = \(1{7 \over 10}\)
At the end Combine the whole and fraction parts \(11 +1{7 \over 10}\) = \(12{7 \over 10}\)
4) \( 2 {5 \over 4} \ + \ 5 {4 \over 3} = \ \)\( \ \color{red}{(2 + 5)+{5 \times 3 \ + \ 4 \times 4 \over 4\times3} = } \) \(\color{red}{7{15 +16 \over 12}}\)\(\color{red}{ = 7{31 \over 12} = 7 + 2{ 7 \over 12}}\)
Solution:
The first step is to rewrite the equation with parts separated, \(2+{5 \over 4}+5+{4 \over 2}\)
Then solve the whole number parts \(2+5=7\)
Now solve the fraction parts, and rewrite to solve with the equivalent fractions. \({5 \over 4} +{4 \over 2}\) = \( 5 \times 3 \ + \ 4 \times 4 \over 4 \times 3 \) = \( 15 + 16 \over 4 \) = \( 31 \over 4\) =\( 2{7 \over 12}\)
At the end Combine the whole and fraction parts \(7 +2{7 \over 12}\) = \(9{7 \over 12}\)
5) \( 1 {7 \over 8} \ + \ 6 {8 \over 7} = \ \)\( \ \color{red}{(1 + 6)+{7 \times 7 \ + \ 8 \times 8 \over 8\times7} = } \) \(\color{red}{7{113 \over 56}}\)\(\color{red}{ = 7 + 2{1 \over 56}}\)\(\color{red}{ = 9{1 \over 56}}\)
Solution:
The first step is to rewrite the equation with parts separated, \(1+{7 \over 8}+6+{8 \over 7}\)
Then solve the whole number parts \(1+6=7\)
Now solve the fraction parts, and rewrite to solve with the equivalent fractions. \({7 \over 8} +{8 \over 7}\) = \( 7 \times 7 \ + \ 8 \times 8 \over 8 \times 7 \) = \( 113 \over 56 \) = \(2{1 \over 56}\)
At the end Combine the whole and fraction parts \(7 +2{1 \over 56}\) = \(9{1 \over 56}\)
6) \( 7 {3 \over 10} \ + \ 6 {4 \over 3} = \ \)\( \ \color{red}{(7 + 6)+{3 \times 3 \ + \ 4 \times 10 \over 10\times3} = 13{ 9+40 \over 30 }} \) \(\color{red}{= 13{49 \over 30} =13 + 1{19 \over30}= 14{19 \over 30}} \)
Solution:
The first step is to rewrite the equation with parts separated \(7+{3 \over 10}+6+{4 \over 3}\)
Then solve the whole number parts \(7+6=13\)
Now solve the fraction parts, and rewrite to solve with the equivalent fractions. \({3 \over 10} +{4 \over 3}\) = \( 3 \times 3 \ + \ 4 \times 10 \over 10 \times 3\) = \( 9+40 \over 30 \) = \( 49 \over 30\) = \(1{ 19 \over 30}\)
At the end Combine the whole and fraction parts \( 13 + 1{19 \over30}= 14{19 \over 30}\)
7) \( 7 {10 \over 3} \ + \ 7 {5 \over 6} = \ \)\( \ \color{red}{(7 + 7)+{10 \times 6 \ + \ 5 \times 3 \over 3\times6} = } \) \(\color{red}{14{60 + 15 \over 18}}\) \(\color{red}{=14 +{75 \over 18}}\) \(\color{red}{=14 + 4{3\over 18}}\) \(\color{red}{ =18{3 \over 18} = 18{1 \over 6}}\)
Solution:
The first step is to rewrite the equation with parts separated \(7+{10 \over 3}+7+{5 \over 6}\)
Then solve the whole number parts \(7+7=14\)
Now solve the fraction parts, and rewrite to solve with the equivalent fractions. \({10 \over 3} +{5 \over 6}\) = \( 10 \times 6 \ + \ 5 \times 3 \over 3 \times 6\) = \( 60+ 15 \over 18 \) = \( 75 \over 18\) = \( 4{3 \over 18} = 4{1 \over 6}\)
At the end Combine the whole and fraction parts \( 14 + 4{1 \over6}= 18{1 \over 6}\)
8) \(7{8 \over 6} + 2{ 3\over 8} = \ \) \( \ \color{red}{(7 + 2)+{8 \times 8 \ + \ 3 \times 6 \over 6\times8} = } \) \(\color{red}{9{82 \over 48}}\)\(\color{red}{ = 9 + {41\over 24} = 9+ 1{17\over 24}}\)\(\color{red}{ = 10{17 \over 24}}\)
Solution:
The first step is to rewrite the equation with parts separated, \(7+{8 \over 6}+2+{3 \over 8}\)
Then solve the whole number parts \(7+2=9\)
Now solve the fraction parts, and rewrite to solve with the equivalent fractions. \({8 \over 6} +{3 \over 8}\) = \( 8 \times 8 \ + \ 3 \times 6 \over 6 \times 8 \) = \( 64 + 18 \over 48 \) = \( 82\over 48\) = \(1{17 \over 24}\)
At the end Combine the whole and fraction parts \(9 +{1{17 \over 24}}\) = \(10{17 \over 24}\)
9) \( 4 {9 \over 5} \ + \ 7 {4 \over 3} = \ \)\( \ \color{red}{(4 + 7)+{9 \times 3 \ + \ 4 \times 5 \over 5\times3} = } \) \(\color{red}{11{47 \over 15}}\)\(\color{red}{ = 11 + 3{2 \over 15}}\)\(\color{red}{ = 14{2 \over 15}}\)
Solution:
The first step is to rewrite the equation with parts separated, \(4+{9 \over 5}+7+{4 \over 3}\)
Then solve the whole number parts \(4+7=11\)
Now solve the fraction parts, and rewrite to solve with the equivalent fractions. \({9 \over 5} +{4 \over 3}\) = \( 9 \times 3 \ + \ 4 \times 5 \over 5 \times 3 \) = \( 27 + 20\over 15\) = \( 47\over 15\) = \(3{2 \over 15}\)
At the end Combine the whole and fraction parts \(11 +{3{2 \over 15}}\) = \(14{2 \over 15}\)
10) \( 4 {8 \over 7} \ + \ 6 {4 \over 6} = \ \)\( \ \color{red}{(4 + 6)+{8 \times 6 \ + \ 4 \times 7 \over 7\times6} = } \) \(\color{red}{10{76 \over 42}}\)\(\color{red}{ = 10 + 1{34 \over 42} = 11{76 \over 42}}\) \(\color{red}{ = 11{17 \over 21}}\)
Solution:
The first step is to rewrite the equation with parts separated, \(4+{8 \over 7}+6+{4 \over 6}\)
Then solve the whole number parts \(4+6=10\)
Now solve the fraction parts, and rewrite to solve with the equivalent fractions. \({8 \over 7} +{4 \over 6}\) = \( 8 \times 6 \ + \ 4 \times 7 \over 7 \times 6 \) = \( 48 + 28\over 42\) = \( 76\over 42\) = \(1{34 \over 42}\)= \(1{17 \over 21}\)
At the end Combine the whole and fraction parts \(10 +1{17 \over 24}\) = \(11{17 \over 21}\)